Available online at www.sciencedirect.com
JOURNAL OF

SCIENCE@DIRECT@ Economic
Theory

ELSEVIER Journal of Economic Theory 122 (2005) 185—-205 _
www.elsevier.com/locate/jet

Voting by committees under constraints
Salvador Barbefa Jordi Massd*, Alejandro Nemé

@Departament d’Economia i d’Historia Economica and CODE, Universitat Autonoma de Barcelona, 08193,
Cerdanyola del Vallés, Barcelona, Spain
binstituto de Matematica Aplicada, Universidad Nacional de San Luis and CONICET, Ejército de los Andes 950,
5700, San Luis, Argentina

Received 18 June 2002; final version received 20 May 2004
Available online 27 August 2004

Abstract

We consider social choice problems where a society must choose a subset from a set of objects.
Specifically, we characterize the families of strategy-proof voting procedures when not all possible
subsets of objects are feasible, and voters’ preferences are separable or additively representable.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Many problems of social choice take the following form. Thererakoters and a set
K = {1, ..., k}ofobjects. These objects may be bills considered by alegislature, candidates
to some set of positions, or the collection of characteristics which distinguish a social
alternative from another. The voters must choose a subset of the set of objects.

Sometimes, any combination of objects is feasible: for example, if we consider the elec-
tion of candidates to join a club which is ready to admit as many of them as the voters
choose, or if we are modelling the global results of a legislature, which may pass or reject
any number of bills. Itis for these cases that Barbera §fpprovided characterizations of
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all voting procedures which are strategy-proof and respect voter’s sovereignty (all subsets
of objects may be chosen) when voters’ preferences are additively representable, and also
when these are separable. For both of these restricted domains, voting by committees turns
out to be the family of all rules satisfying the above requirements. Rules in this class are
defined by a collection of families of winning coalitions, one for each object; agents vote for
sets of objects; to be elected, an object must get the vote of all members of some coalition
among those that are winning for that object.

Most often, though, some combinations of objects are not feasible, while others are: if
there are more candidates than positions to be filled, only sets of size less than or equal to
the available number of slots are feasible; if objects are the characteristics of an alternative,
some collections of characteristics may be mutually incompatible, and others not. Our
purpose in this paper is to characterize the families of strategy-proof voting procedures
when not all possible subsets of objects are feasible, and voters’ preferences are separable
or additively representable. As [ii], we can identify each set of objects with the value
of its characteristic functions, and thus with some vertex oktldemensional hypercube.

Our characterization tells us exactly what social choice functions will be strategy-proof and
onto for each given set of vertices, to be interpreted as the family of feasible subsets from
which society wants and can choose from. Our main conclusions are the following. First,
rules that satisfy strategy-proofness are still voting by committees, with ballots indicating
the best feasible set of objects. Second, the coalition structures for different objects must be
interrelated, in precise ways which depend on what families of sets of objects are feasible.
Specifically, each family of feasible subsets will admit a unique decomposition, which will
dictate the exact form of the strategy-proof and onto social choice functions that can be
defined on it. Third, unlike 7], the class of strategy-proof rules when preferences are
additively representable can be substantially larger that the set of rules satisfying the same
requirement when voters’ preferences are separable.

Our characterization result for separable preferences is quite negative: infeasibilities
quickly turn any non-dictatorial rule into a manipulable one, except for very limited cases.

In contrast, our characterization result for additive preferences can be interpreted as either
positive or negative, because it has different consequences depending on the exact shape of
the range of feasible choices. The contrast between these two characterization results is a
striking conclusion of our research, because until now the results regarding strategy-proof
mechanisms for these two domains had gone hand to hand, even if they are, of course,
logically independent.

In order to compare our results with others in the literature, it is worth noticing that our
framework, where alternatives (sets of objects) can be expressed as vectors of
zeros and ones, has been extended. Barbera ] alxtended the analysis to cover sit-
uations where the objects of choice are Cartesian products of integer intervals, allow-
ing for possibly more than two values on each dimension. The pioneering work of
Border and Jordaf®] considered functions whose range is any Cartesian product of in-
tervals in the real line. In there and in other contexts of multidimensional choice where
the range of the social choice rule is a Cartesian product, strategy-proof rules are neces-
sarily decomposable into rules which independently choose a value for each dimension,
and are themselves strategy-proof (fB@&11] for general expressions of this important
result).



S. Barbera et al. / Journal of Economic Theory 122 (2005) 185-205 187

In[5] (see alsd6]) we considered the consequences of introducing feasibility constraints
in that larger framework. The range of feasible choices is no longer a Cartesian product
and this requires a more complex and careful analysis. All strategy-proof rules are still
decomposable, but choices in the different dimensions must now be coordinated in order to
guarantee feasibility. While these previous papers make an important step in understanding
how this coordination is attained for each given shape of the range, it is marred by a strong
assumption on the domain of admissible preferences. Specifically, we assume there that the
bliss point of each agent is feasible. This assumption is not always realistic. Moreover, it
makes the domain of admissible preferences dependent on the range of feasible choices.

Several authors (Serizaa3] and Answal et al[1]) have studied the consequences of
specific restrictions on the range, like budget constraints or limitations on the number of
objects that may be chosen. These authors only consider the case of separable preferences,
not the additive case, which is the one providing some positive results. Our results apply
generally and cover all types of infeasibilities within our context: ranges of all shapes are
allowed.

In the present paper we come back to the question of strategy-proofness under constraints
within a more limited framework, the one where only two values can be taken by each of
the components dtdimensional vectors, initially considered by Barbera ef@).,This is
done for clarity of exposition, given that in all other respects we are going to substantially
extend the previous analysis. One substantial extension consists in that we can apply our
result regardless of the nature and the form of feasibility restrictions: our results apply to
ranges of any shape. Budget constraints, capacity limits, lower bounds on the number of
objects to be chosen are all specific cases that we cover with a single result. It is also worth
noting that we tackle the case where all separable preferences (and all additive preferences)
are admissible without any further restriction.

Perhaps the most important progress regarding previous results in this literature comes
from the new insights we get on the need for strategy-proof rules to be decomposable. As
already mentioned, when the range of the rule is a Cartesian product, strategy-proofness
requires and allows to decompose global decisions into partial ones, one for each object (or
for each dimension). What we prove is that the decomposition of the range as a Cartesian
product is still essential in order to understand the possibility of defining strategy-proof
rules. Even when a set is not a Cartesian produdt séparate sets of values, one for
each object, it can always be decomposed in different pieces (maybe only one, in the
most degenerate cases), through what we call the minimal Cartesian decomposition. Then,
strategy-proof rules must be decomposable into rules that choose in a strategy-proof manner
within each of these pieces (sections), and then aggregate these choices into a feasible
alternative. This structure generalizes our previous notions of decomposability, which was
restricted before to one of the cases where the decomposition into Cartesian components is
trivial.

The paper is organized as follows. Section 2 contains preliminary notation and definitions
as well as previous results. In Section 3, we introduce specific definitions and notation,
obtain preliminary results, and present our two characterizations: Theorem 1 for additive
preferences and Theorem 2 for separable ones. Section 4 contains an important final remark:
the Gibbard—Satterthwaite Theoremis a corollary of our results. Section 5 contains the proof
of Theorem 1, omitted in Section 3.
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2. Preliminaries

Agentsare the elements of a finite sdt = {1, 2, ..., n}. The set of objects i¥ =
{1, ..., k}. We assume thatandk are at least 2. Generic elementd\bivill be denoted by
i andj and generic elements & will be denoted byx, y, andz. Alternativesare subsets
of K which will be denoted by, Y, andZ. Subsets oN will be represented by and
J. Calligraphic letters will represent families of subsets; for instai¢e), and Z will
represent families of subsets of alternatives WadzZ, and.7 families of subsets of agents
(coalitions).

Preferencesre binary relations on alternatives. [Rebe the set of complete, transitive,
and asymmetric preferences ofi.2Preferences i are denoted by?;, P;, P/, and PJ’..

For P; eP andX < 2K, we denote the alternative ii most-preferred according 8 as
7x (P;), and we call ithe top ofP; on X'. We will uset (P;) to denote the top of; on 2X.
Generic subsets of preferences will be denote® by

Preference profilearen-tuples of preferences. They will be represente@by (P, ...,
P,) orby P = (P;, P_;) if we want to stress the role of agentspreference.

A social choice function oR is a functionF: P* — 2K,

Definition 1. The social choice functio': P* — 2K respects votes sovereigntyf for
everyX e 2K there exists? € P" such thatF (P) = X.

The range of a social choice functidn P* — 2K is denoted bR r; that is
Rrp = {X e 2K | there exists? € P" such thatF (P) = X} )

DenotebyR the set of chosen objectmiamely
Rr ={x € K |x € X forsomeX € Rr}.

Definition 2. A social choice function: P* — 2K is manipulableif there existP =
(P1,...,P,) € P",i € N,andP/ € P such thatF (P!, P_;) P;F (P). A social choice
function onP is strategy-prooff it is not manipulable.

Definition 3. A social choice function‘:: P" — 2K is dictatorial if there exists € N
such thatF (P) = tr, (P;) forall P € P".

The Gibbard—Satterthwaite Theorem states that any strategy-proof social choice func-
tion on P will be either dictatorial or its range will have only two elements. It would
apply directly if any individual preference over the sets of objects were in the domain.
However, there are many situations where agents’ preferences have specific structure due
to the nature of the set of objects, and this structure may impose meaningful restric-
tions on the way agents rank subsets of objects. We will be interested in two natural
domains of preferences: those that are separable and those that are
additive.



S. Barbera et al. / Journal of Economic Theory 122 (2005) 185-205 189

Definition 4. A preferenceP; on 2X is additiveif there exists a function,; : K — R such
thatforallX,Y € K

xpyifandonlyif > u; (x) > > ui (v).

xeX yey

The set of additive preferences will be denoteddhy

An agent has separable preferencRsf the division betweemoodobjects (x} P; {#})
andbadobjects (4} P;{x}) guides the ordering of subsets in the sense that adding a good
object leads to aetterset, while adding a bad object leads tovarseset. Formally,

Definition 5. A preferenceP; on 2X is separabléfforall X € K and ally ¢ X
X U{y} P X ifand only if {y}P; {4} .

Let She the set of all separable preferencesdn\®e can give a geometric interpretation
to this set by identifying each object with a coordinate and eaclX ftobjects with a
vertex of ak-dimensional cube; i.e., with tHedimensional vector of zeros and ones, where
x belongs toX if and only if that vector has a one s coordinate. Sometimes we will make
use of this geometric interpretation. For instance, gi¥ety¥ C K the minimal box on X
and Yis the smallest subcube containing the vectors correspondXgumalY; namely,

MB(X,Y):{ZezK|(xmy)gzg(xuy)}.

Following with this interpretation, it is easy to see that a prefer@hds separable if for
allZandY € MB (t(P)), Z)\Z,YP; Z.

Remark that additivity implies separability but the converse is false with more than two
objects. To see that, l&f = {x, y, z} be the set of objects and consider the separable
preference

{x. v, 2} Pily, 2} Pilx, 2} Pifx, v} Pi{x} Py} Pi{z} Pi {0},

which is not additive sincéx} P;{y} and{y, z} P;{x, z}. Geometrically, additivity imposes
the condition that the orderings of all vertices on each parallel face of the hypercube coin-
cide while separability admits the possibility that some vertices of two parallel faces have
different orderings. This geometric interpretation will become very useful to understand the
differences of our two characterizations.

To define voting by committees as|if] we need the concept of a coalition structure.

Definition 6. A coalition structure)V is a nonempty family of nonempty coalitions Nf
which satisfies coalition monotonicity: if € YW andl C J, thenJ € W. Coalitions in
W are calledvinning A coalition € W is aminimal winning coalitiorif for all J¢ 7 we
have that/ ¢ W.

Given a coalition structur®V, we will denote byW™ the set of its minimal winning
coalitions. A coalition structur@V is dictatorial if there existss € N such thaiV™ =
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{{i}}. Associated to each family of coalition structures (one for each object) we can define
a special type of social choice functions.

Definition 7. A social choice functiorF: P* — 2K is voting by committeesf for each
x € K, there exists a coalition structuW®, such thatforallP = (P4, ..., P,) € P",

x e F(P)ifandonlyif{i e N | x € tr.(P)} € Wk.

A social choice functior is calledVoting by quota d1< ¢ <n) if for all x the coalition
structureWV, is equal to the family of coalitions with cardinality equal or larger tihjan

We state, as Proposition 1, Barbera e{#]'s characterization of voting by committees
as the class of strategy-proof social choice functionS,@s well as o\, satisfying voter’s
sovereignty.

Proposition 1. A social choice functio#: S* — 2K (or, F: A® — 2K) s strategy-proof
and satisfies votés sovereignty if and only if it is voting by committees.

To cover social choice problems with constraints we have to drop the voter’s sovereignty
condition of Proposition 1. But a result [B] tells us that the only strategy-proof rules in
this case must still be of the same form: this is stated in Proposition 2.

Proposition 2. AssumeF: S' — 2K (or, F: A" — 2K) is strategy-proafThen F is
voting by committee$.

3. Two characterization results
3.1. The need to coordinate: two examples and an outline

Because of feasibility constraints, not all voting by committees can be guaranteed to
always select a feasible alternative. The exact nature of the constraints, i.e., the shape
of the range, will determine which combinations of coalition structures can constitute a
proper social choice function for this range. Example 1 illustrates this fact. Moreover, under
the presence of infeasibilities, there are voting by committees that, although respecting
feasibility, are not strategy-proof. Example 2 illustrates this possibility.

Example 1. Let K = {x, y} be the set of objects andl = {1, 2, 3} the set of agents.
Assume thatd}, {x}, and{y} are feasible butx, y} is not. Voting by quota 1 does not respect
feasibility because for any preference proRlavith the property that(Py) = t(P2) = {x}
andt(P3) = {y}, bothx andy should be elected, which is infeasible. However, voting

by quota 2 does respect feasibility becanssndy cannot get simultaneously two votes
(remember, agents cannot vote for infeasible outcomes) since the complementary coalition
of each winning coalition fok is not winning fory, and vice versa.

LIt is easy to check that the proof of Proposition Z5h which covers the case of separable preferences also
applies to the smaller domain of additive preferences.
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This idea will play an important role in our characterization with additive preferences.
As suggested by our example, when defining a social choice function by means of coalition
structures, we must guarantee that if all agents vote for a feasible alternative, then the
result must also be a feasible alternative. This was the role played by the intersection
property in[5]. Here we shall ensure it by a combination of conditions, one of which will
be the choice of mutually exclusive coalition structures under certain situations. Mutually
exclusive coalition structures, following the hint provided in the previous example, are
formally defined as follows.

Definition 8. We say that two coalition structuré4’ and )V’ are mutually exclusivef
D € WimpliesN\D ¢ W andD € W impliesN\D ¢ W.

The interested reader may check that our characterization results (Theorems 1 and 2)
guarantee that the intersection propertjahwill be satisfied by the rules we define in each
case.

Example 2. LetK = {x, y} bethe setofobjectsamd = {1, 2, 3} the setofagents. Assume
that{#}, {x}, and{y} are feasible butx, y} is not. Consider the social choice functibn
defined by voting by quota 3 (which respects feasibility) an® le¢ any additive (as well as
separable) preference profile such th@;) = t(P3) = {y} and{x, y}P1{x}P1{y}P1{4}.
Since’fzk\{x)y}(Pl) = {x}, yreceives two votes ancbne; thereforeF (P) = {}. However,

if agent 1 declares the preferenBgwhere{y}P;{x, y} P;{/} P{{x}, theny receives three
votes andx none; that is,F(P;, P2, P3) = {y}P1{f} = F(P1, P>, P3). Hence/F is not
strategy-proof.

The purpose of our two characterizations is to identify exactly the subfamilies of coalition
structures that simultaneously respect feasibility and are strategy-proof for the domains of
additive and separable preferences.

We begin with some intuition about the nature of our results. For that, we first remind the
reader about the essential features of voting by committees when there are no constraints,
as in[7]. There, the choice of a set can be decomposed into a family of binary choices, one
for each object. In each case, society decides whether the object should or should not be
retained, and the union of selected objects amounts to the social alternative. If the methods
used to decide upon each object are each strategy-proof, then so is the method resulting
from combining them into a global decision, as long as the agent’s preferences are additive
or separable. Agents should be asked to express their best set, and under the expressed
domain restrictions this is equivalent to expressing those objects that they would prefer to
be included in the social decision, rather than not.

In our case, a first difference is that the choice of sets may not be decomposable to the
extreme of allowing for independent decisions on each object. Our results tell us precisely
about the extent to which global decisions can be decomposed, and say how to coordinate
the decisions within groups of objects that require joint treatment. Indeed, in the presence of
infeasibilities, the decision on what objects to choose, and which ones not to, can no longer
be decomposed into object-by-object binary decisions. For example, chaasigbt only
be possible ify is not chosen: then the choices regardirandy must be joint. Similarly,
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zmight only be chosen iivis, and again decisions involving these two objects need to be
coordinated. Yet, if all feasible choicesandy, when coupled with any feasible choice

for zandw, turn out to be feasible, there is still room for decomposition of the choices in
two blocks of objects. If, on the contrary, further restrictions must be taken into account,
whereby certain feasible choices fromandy become incompatible with some feasible
choices fromz andw, then decomposition is not possible. The paper provides a precise
statement about the extent to which decisions on what sets to choose can be decomposed
into partial decisions involving subsets (we call each part of the decomposition a section),
in the presence of feasibility constraints. Moreover, we discuss the characteristics of the
coalition structures that must be used in order to coordinate the choices of objects within
each of the sections.

3.2. The minimal Cartesian decomposition of a family of subsets

In this subsection, we shall describe the way in which any family of subsets can be
decomposed uniquely into what we call a minimal Cartesian decomposition. This will be
exactly the decomposition that will allow us to make our previous statements precise, as
expressed in Theorems 1 and 2, to be found in Sections 3.3 and 3.4. As we proceed, and in
order to help the reader through the new definitions, we introduce an example to illustrate
the new concepts.

Example 3. LetK = {a, b, z, w, t} be the set of objects and assume that the set of feasible
alternativesM is

{by, {b,t},{b, 2}, {b,z,t}, {b,z, w}, {b,z, w, t}}.

Notice that (1)a is never chosen, (3) is always chosen, (3) is only chosen iz is, and
(4) t can be chosen or not, whatever happens.

Given a social choice functiofi: P" — 2K and a subseB of RF define theactive
components of B in the range

AC(B)={YNB|Y € RF}.

Active components 0B are subsets d whose union with some subset®y\ B is part of

the range.

Example 3(Continued)The active components of the séi§, {z, w} and{r} are AC ({z}) =

{79}, {z}}, AC ({z, w}) = {{#}, {2}, {z, w}}, and AC ({t}) = {{@}, {t}}, respectively.
Now, givenB’ € B C Ry define theange complement @’ relative to Bas

CP(B)={C<SRpF\B|B' UCeRF}.

The range complement of a sub#tof B is the collection of sets iR\ B whose union
with B’ isinthe range. Notice thatC (B) can also be writtendX € B | XUY € Rp. for
someY € CE(X)}.
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Example 3(Continued) The range complement of the subs@ts {z}, and{z, w} relative
to {z, w} coincide and they are all equal tb} + {{#}, {t}}.2

A section is a group of objects with the property that the decision among their active
components can be made without paying attention to the infeasibilities involving objects
on its complement.

Definition 9. A subset of object® C K is asectionof R if for all active components
B', B” € AC (B) we haveC? (B') = CE(B").

Example 3(Continued)The sefz, w} is a section oR becausedC ({z, w}) = {{4}, {z} ,
{z, w}} (notice that the subsétv} is not an active component ¢f, w}) and, as we have

already seerGy" () = ¢ ({z}) = CF") ({z. wh) = (b} + {0} {1}}.

Remark 1. B = Rp is a section ofRp becauseﬁ,{f (X) = {4} for all active components
X e AC (RF) = RrF.

Remark 2. Bis a section ofRy if and only if, for all B’ € AC(B),
Rr = AC(B) + CE(B).

Lemma 1. Let B be a section oRr and let By and B> be such thatB = B; U By,
B1 N By = {#}, and By is a section ofRr. Then B, is also a section oRf.

Proof. To show thatB, is a section oRy, let X», Y» € AC (B>) be arbitrary. We must show
Cp? (X2) = C2 (Y2). (1)
By definition of active component df,, we can findX, Y € R such that
X2 =XNBy e AC(B2) (2)
and
Yo=Y N By € AC(B>2).
Moreover, by definition of range complementX andY> relative toBa,
X N BS € CR2(X2)
and
Y N BS € CR2(Y2),
2 Given two families of subsets of objectsand) we denote byX’ + ) the sum of the two; namely,

X+Y={xuYye2K|Xecxandy e
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where, given aseX C K, Z¢ = K\ Z. Notice, that to show thaflj holds, it is sufficient
to show thatr N BS € Cllfz(Xz); that is,

X2U(YNB3) € Rr.
By (2), and sinceB; = B1 U B¢,

X2 U (Y N BS)= (XN By)U (YN BS)
= (XN By)U (Y N By U (Y N BO).

Clam1l. (XNB)UXNB)UX NB)eRFE.

Proof. SinceY € R, (Y N B) U (Y N B) € Rr. ThereforeY N B¢ € C,{f(é) for some

B € AC(B). Moreover, sinceB is a section and N B € AC(B), Remark 2 implies that
(XNB)U((Y NB € Rp. Hence, (X N B1) U (X N Bp) U (Y N B°) € Rp, which is the

statement of the claim.

Therefore, by Claim 1 and the hypothesis tBatis a section,
(X N Ba) U (Y N BY) € C2X(BY)

forall B} € AC(B1). Becaus&Y N By) € AC(B1) we have, by Remark 2X N B) U (Y N
B1) U (Y N B°) € Rr. Hence Y N BS) € CP2(Xp). [

Definition 10. A partition {Bl, e Bq} of Rp is aCartesian decomposition & if for
all p=1,...,q, B, is a section ofRr. A Cartesian decomposition is calleginimal if
there is no finer Cartesian decompositionrgf.

Example 3 (Continued) The partition{{b}, {z, w}, {¢t}} of Rp is the minimal Cartesian
decomposition ofRr, since one can check that all of its elements are minimal sections.
The sectionz, w} is minimal since neithefz} nor {w} are sections because, for instance,
AC ({w}) = {{4}, {w}} but

CiH (o)) = (b) + (19}, (2} + 19}, (1))
and
" (qw}) = (b} + {} + (4} (1)}

and henceC}“’} (oh # C}“)} {w)).
The proof that all other components of the decomposition are also minimal sections is
similar and left to the reader.

Remark 3. Let {By, ..., B;} be a partition ofRr. Then,{Bi, ..., B,} is a Cartesian
decomposition o if and only if

Rr =AC(By) + -+ AC (By).
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We want to show (Proposition 3 below) that, given any social choice funEtits corre-
sponding seR r has a unique minimal Cartesian decomposition. In the proof of Proposition
3 we will use the following Lemma.

Lemma 2. Let B; and B2 be two sections oRr. ThenB = By U By is also a section
of Rp.

Proof. Let B = B1 U By and assume thdt; and B, are sections oRr. Let X, Y € Rr be
arbitrary. They can also be written as

X = (XN B)U (XN B
and
Y = (YN B)U (Y N BY).

To show thaB is a section, it is sufficient to show th@t N B) U (Y N B€) € Rr. Rewrite
XandY as

X = (XN (B1\B2)) U (X N (B2\B1)) U (X N (B1N Bp)) U (XN B°)
and
Y = (Y N (B1\B2)) U (Y N (B2\B1)) U (Y N (B1N B2)) U (Y N BY).

SinceBy is asection(Y N(B1\B2))U(Y N(B1N B2)) and(X N(B1\B2))U(XN(B1NB2))
belong toAC(B1), and(Y N(B2\B1))U(Y N B¢) € Cﬁl((Y N(B1\B2))N (Y N(B1N Bp))).
Therefore,

(X N (B1\B2)) U(X N (B1N B2)) U (Y N (B2\B) U (Y N B°) € Rp.
By definition of the range complement @f N (B2\B1)) U (X N (B1 N B)) relative toBy,

(X N (B1\B2) U (Y N BC) € CR2((Y N (B2\B1)) U (X N (B1N B2))). 3)
Also, sinceX andY belong toR r and Bz is a section,

(XN Ba) U (Y NBS) € Rp. (4)
Rewriting @), we have

(Y N (B1\B2)) U (X N (B2\B1) U (X N (B1N B2)) U(Y N B) € Rp.
Therefore,

(X N (B2\B1) U (X N (B1N B)) € AC(B). )
Then, by 8) and 6), the fact again thaB; is a section, and Remark 2,

(X N (B2\B1)) U(X N (B1N B2) U (X N(B1\B2) U (Y NB) € Rp.

This implies that X N B) U (Y N B°) € Rr. HenceBis a section oRp. O
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Proposition 3. Ry has a unique minimal Cartesian decomposition.

Proof. Assume not. LetBj, ..., BJ,} and{B%,..., BZ,} be two distinct minimal Cartesian
decompositions oR . There exists at least one pair such tBé} N B§2 # {0} andB;1 #
B3,.By Lemma 2,B}, U B3, is a section ofRr. By Lemma 1,B7 \ B3, is also a section
of Ry implying, again by Lemma 1, thaB1, ..., B}, } was not minimal. ]

3.3. Additive preferences
We can now state our first characterization.

Theorem 1. A social choice functiorF: A* — 2K is strategy-proof if and only if it is
voting by committees with the following properties

(1.1) W, andW), are equal for all x and y in the same active component of any section
with two active components iRg’s minimal Cartesian decompositipn

(1.2)W, andW, are mutually exclusive for all x and y in different active components of
the same section iRr’s minimal Cartesian decompositiomhen there are only two active
components in this sectipand

(1.3)W, is dictatorial and equal for all 3s in the same section Rr’s minimal Cartesian
decomposition, when this section has more than two active components.

The proof of Theorem 1 is in the Appendix at the end of the paper.

Our Theorem refers to the sBf, and is thus stated as if we started from a given function
F and then described the necessary and sufficient conditions fdét thise strategy-proof.
We can take another point of view, which is also compatible with our purposes. Start from
any family M of subsets oK. InterpretM as the set of feasible outcomes. We can then
re-read Theorem 1 as telling us everything about the strategy-proof social choice functions
which can be defined ontd1 (which will then be the range of these functions). True, there
may also exist other strategy-proof functions which start with a feasibléfsand end up
having a subset aM as the range. But then, if there are alternatives that the designer is
willing to give up as possible outcomes, we might as well reinterpret them and include these
outcomes among those which we consider unfeasible, for practical purposes. Example 4
below illustrates the statement of Theorem 1.

Example 4. LetK = {a, b, x,y,z, w, 1, 5, q, t} be the set of objects and assume that the
set of feasible alternatives is

M={p}} + {7}, {x}, B + {0} {2} o wit + {{r} s, g3} + ({90 {2})

Any voting by committeeg”: A" — 2K will be strategy-proof and will hav® r = M as
long as it satisfies the following properties: (a) by (1.3) of Theorewt,= Wi = {{i1}}
andW?" = Wy = {{iz}} for someiy, i € N; (b) by (1.1) of Theorem DV" = W}f;
and (c) by (1.2) of Theorem 2V, and W, are mutually exclusive. To illustrate these
conditions, letN = {1, 2} be the set of agents and consider the voting by committees
whereWy = Wi = {{1}}, W' = Wil = {{2}}, andW; = W) = W' = W[ =



S. Barbera et al. / Journal of Economic Theory 122 (2005) 185-205 197

Wyt =W = {{1, 2}}. Observe thaF satisfies properties (a), (b), and (c), and hence, by
Theorem 1, it is strategy-proof on the domain of additive preferenceRang M.

3.4. Separable preferences

In contrast with the unconstrained case, our results for separable preferences are quite
different (and much more negative) than for additive preferences. Essentially, this is because
in the presence of infeasibilities, agents are not asked to vote for their preferred sets, but
rather for their preferred feasible sets. Hence, they may end up voting for their second best,
their third best, etc. Now, some of the individual objects they vote for may be retained,
and others not. Likewise, some objects they do not vote for can obtain. What matters for
strategy proofness is whether the best set for each agent among those that contain some
externally fixed objects (those that are chosen in spite of the agent’s negative vote) and
do not contain some others (those that are not chosen even if the agent supports them)
is the set that contains, in addition to those, as many elements from the agent’s preferred
feasible set. This is the case for additive preferences in all cases. It is also the case for
separable preferences if the first best for the agent is feasible, but not necessarily other-
wise. That is why, in the presence of infeasibilities, declaring the best feasible set may
not be a dominant strategy for some voters, even when voting by committees are used
(except if the first best is always feasible, a situation studid8]in Whereas it is always
a dominant strategy for additive preferences. This accounts for the differences in results
under these two different domains. To further illustrate this general point, we can go back
to Example 3.

Example 3(Continued) Let F: S — 2K be defined by the coalition structurgg” =
wi = {1}, andW' = W' = W' = {{1, 2}}. To see thaF is manipulable on the
domain of separable preferences, consider any separable pref@enith the following
properties:

(1)t (P) = {b, w,t}andtr, (P) = {b,z, w, }.

(2) {b, z, w, t} P1{b, t} and{b} P1 {b, z, w}.

Observe thaP; is not additive because additip {», z, w} and to{s} inverts its ordering.
Take any separable profile of preferen¢g$, P») with the properties that(P;) = {b} and
T (Pp) = {b, z, w}. Then,

F (P{, P2) = {b} P1{b,z, w} = F (P1, P),
implying thatF is manipulable by agent 1 at profil@;, P,) with the preference;.

Theorem 2 below characterizes the family of strategy-proof social choice functions when
voters’ preferences are separable. Our result shows that the class of strategy-proof social
choice functions under additive representable preferences identified in Theorem 1 is dras-
tically reduced as a consequence of this enlargement of the domain of preferences. This
is an important novelty with respect to the situation without constraints. Now, only social
choice functions with Cartesian product ranges (up to constant and/or omitted objects,) are
strategy-proof. Namely, the range Bfhas to be a subcube: all sections of the minimal
Cartesian decomposition & (the set of not omitted objects) are singletons, either with



198 S. Barbera et al. / Journal of Economic Theory 122 (2005) 185-205

the object itself as the unique active component (constant object) or else with the object
itself andthe empty set as the two active components. Formally,

Theorem 2. A social choice functiorF: S* — 2K s strategy-proof if and only if it is
voting by committees with the following property

(2.1) If #Rr >3 then either F is dictatorial or all sections of the minimal Cartesian
decomposition oR are singletons

Proof. Let F: S' — 2K be a voting by committees satisfying property (2.1)Flis
dictatorial then it is obviously strategy-proof. If% >3 and all sections of the minimal
Cartesian decomposition &y are singletons, then the set of active components in the
range of each objectof this Cartesian decomposition &f is either{{#}, {x}} or {{x}}.

When the set of active components is of the fdfm}}, this means that objegtis always
chosen. When the set of active components is of the fdéh, {x}}, then voters have a
choice between including and not doing it. Leaving aside the constant elements, which
have no consequence for strategy-proofness, the remaining choices between the objects
with active components of the forfi@} , {x}} are of the type contemplated by Barbera et
al.[7]. Hence, since we assume voting by committees, Fhisnstrategy-proof.

For the converse, assume ttatis strategy-proof. By Proposition E is voting by
committees. To show thd& satisfies property (2.1) assum®&# > 3. Since all additive
preferences are separable, Theorem 1 applies to the subdomain of additive preferences.
Therefore, the coalition structures associateH satisfy properties (1.1), (1.2), and (1.3)
of Theorem 1. AssumE is non-dictatorial. Then, property (1.3) implies that the minimal
Cartesian decomposition &f cannot consist of just one section with strictly more than two
active components. Therefore, and sindez#> 3, the minimal Cartesian decomposition
of Ry contains at least two sections. Now, notice that when preferences are separable but
not additively representable, the active components of a section can be ordered differently
among themselves, depending on which objects are present in another section. That is,
for each pair of section8; and B, of the minimal Cartesian decomposition Bf there
exist at least one separable prefereRece S, X1, Y1 € AC (B1), X2, Y2 € AC (B2), and
Z C Rr\ (B1 U B») such that

(X1UX2UZ) P (X1UY2UZ) and (VLU Yo U Z) P (Y1U X2 U Z) . (6)

This can now be used to show that we cannot have a section with more than two active com-
ponents together with another section having more than one active component. To prove
it, it is enough to construct profiles where the presence of an object affects the ordering of
the active components in another section. Assume that a se®tibas the property that

#AC (B1) > 3. Then, by property (1.3) of Theorem 1, for ale B1, W, is dictatorial (i.e.,

Wit = {{i}} for somei € N). Also assume that there exists another seclgisuch that

#AC (B2) >2. Then, for ally € B>, Wit = {{i}}, since there exists a separable preference

P; satisfying 6). By applying the same argument we could prove that dictatorship extends
to all objects belonging to sections with more than two active components. Therefore, all
sections have either only one active component (the objects that are always selected) or they
have just two active components. Following a similar argument to the one already used to
establish §) it is immediate to see that if a section has two active components they are of



S. Barbera et al. / Journal of Economic Theory 122 (2005) 185-205 199

the form{{#}, {x}}. Hence, all sections in the minimal Cartesian decompositiaRzoére
singletons. [

4. Final remark

Until now, we have taken the dimension of our problems (i.e., the number of objects),
as well as the feasibility constraints, as given data. Our analysis admits another reading
without any formal change, except for its interpretation.

Consider a situation where society faces four alternatayés ¢, andd. One possibility is
that each of these alternatives might be described by two characteristics, and that identifying
a=(0,0),b=(1,0),c=(0,1),andd = (1, 1) provides a good description of the actual
choices (this particular choice would indicate thahdc are similar in the first characteristic
but differ on the second, etc.). It may also be, in another extreme, that these four alternatives
share nothing relevant in common. They can still be represented as vectors of zeros and
ones, but now it is better to embed themff, and identify them ag = (1,0,0, 0),
b=1(0,1,0,0),c=(0,0,1,0),andd = (0,0, 0, 1). There may still be intermediate cases
where three characteristics are necessary and sufficient to distinguish between these four
alternatives. Two examples may be given by the cases

a=(1,0,0), b=(110), c=(10,1), andd = (0,0, 0)
or
a=(1,0,0, b=(0,1,0), c=(0,0,1), andd = (0,1, 1).

In the four- and three-dimensional cases, these four alternatives are only some of the con-
ceivable vertices of the corresponding cubes. Other combinations of zeros and ones represent
conceivable but unfeasible choices.

These examples suggest that the objects in our model (interpreted as characteristics) may
be taken as partial aspects of the overall alternatives (whose role is played in our model by the
feasible sets). This interpretation is not restrictive: any alternative (out of a finite set) can be
described by a (finite) set of characteristics. What is restrictive is that once we identify each
alternative with a set of characteristics (thus embedding it into deditaensional cube),
we also determine the shape of the set of feasible alternatives, and this has consequences
on the class of preferences which pass the test of additivity (or separabBility).

In fact, thanks to the above observations, we can conclude by arguing that the Gibbard—
Satterthwaite Theorem arises as a particular corollary of our Theorem 1. Indeed, take any
finite setA = {x, y, ..., w} of k alternativesX > 2). Identify them with thek unit vectors
and assume that the set of feasible alternativess {{x}, {y}, ..., {w}}. Notice that all

3 Actually, identifying the alternatives of a social choice problem as points in a grid can give us some interesting
insights. In particular, many problems can be rewritten as ones where alternatives are strings of 0 or 1 vectors.
For example, the setting of Barbera et[&]. can be viewed as defining rules to choose among the vertices of a
hypercube. This point of view has been expressed and ug@¢Bi8]. It is the object of recent work by Nehring
and Puppég12].



200 S. Barbera et al. / Journal of Economic Theory 122 (2005) 185-205

preferences ovek are restrictions of some additive preference onktHaémensional cube.
Hence, we are considering the universal domain assumption of the Gibbard—Satterthwaite
result. LetF: A® — 24 be such thaRr = {{x}, {y},..., {w}}. The minimal Cartesian
decomposition ofRr (= A) contains only the sectioB = {x, y, ..., w}, whose set of
active components glC (B) = {{x}, {y}, ..., {w}}. Since #4C (B) > 2, Property (1.3)

of Theorem 1 tells us that only dictatorial rules are strategy-proof on additive preferences.
This is the conclusion we wanted.
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Appendix A. Proof of Theorem 1

The proof of Theorem 1 is based on a decomposition argument that applies an important
result of Le Breton and Sefi0] to our context. This argument, which will be exploited
in the proof of Theorem 1, is expressed as Proposition A.2 below. But before, we need the
following notation.
Let P; be an additively representable preference raid consider a subsBiof K . Let
PI.B stand for the preferences ofi Benerated by the utilities which represéhtLetA 3 be
the set of additive preferences ofl.For a profileP of preferences on®2, P8 will denote
the profile of preferences so restricted, foriadl N.
Given a strategy-proof social choice functisn A” — 2K and a subsé of objects, let
FB: A" — 2B be defined so that for at® e A7

FB (PB) — F(P)NB,

whereP is any additive preference such thaf is generated by the utilities which repre-
sentP.

41n an earlier papef5] we had already used the same embedding or identification of alternatives with unit
vectors in order to prove the Gibbard—Satterthwaite Theorem. In the earlier paper, this was a corollary of a
different characterization than the one we offer here. As a result, our arguments in the present paper, which apply
Theorem 1, are simpler and more direct than in the previous case.
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Remark A.1. Notice that, sincé”: A" — 2K is a strategy-proof social choice function, it
is voting by committees (by Proposition 2). Hence, for&¢ K, F (P)NB = F (ﬁ) NB
forall P, P € A" such thatP® = PB. Therefore F 8 is well-defined.
Proposition A.2. (1) Let F: A" — 2K be a social choice function and 1By, ..., B, }
be a Cartesian decomposition Bf. If F is strategy-proof thed 51, . . .| F 584 are strategy-
proof andF (P) = qul FB (PBr)forall P e A"

Pt

(2) Converselylet {Bi, ..., B;} be a partition ofK” € K and let{51,...,B,} be a
collection of subsets of objects, wily < 2%7 forall p = 1.....q. LetFPr: A% — B,

be a collection of onto social choice functions, oneforepch 1, ..., g.If FB1, ... FBa

q
are strategy-proof, then the functidn(P) = |J F2 (P®r) for all P € A" is strategy-
p=1
proof, { B1, ..., B, } is a Cartesian decomposition & = K’, andRp = B1+ - -+ By.

Proof. (1) Assume{ Bi, ..., Bq} is a Cartesian decomposition Bf- and letP € A". Then,
F(P)=F(P)N Rr by definition of Ry

q
= U [F(P)N B, since(By,..., B,}is a partition ofRr
p=1

q
= J F® (PP by definition of F#» and P5».
p=1

To obtain a contradiction, assume tif&f» is not strategy-proof; that is, there exBfr,
i, andﬁiB” such thatF Br (f’l.B", Pf;’)PiB”FBP(PBP). Therefore, and since preferences are
additive,

D ¢ ) B Sl ) (A1)

verBr(BPr pPr) yeFPr(PPp)

for anyuf’] :B, > R representing’iB".
Take anyP € A" generating?5» and #; generating?”” with the property that

B, ~B
P =P (A.2)

1

B, . B,
forall p’ # p. For eachp’ # p, take anyu, ” representing®; ” . Then, by A.1),

Y W o+ Y wro

P'#p xEFBP/(PBl’/) yGFBP(PBP)
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-y RS T S0

B ~B, B, X B B
xeF P (B P P 1) yeF=r(P7r)

<> > e o+ Y wo),

PEP ek 37 yerb ("7 P71
where the equality follows fromA(2) and the inequality follows fromA(1). Therefore,
F(P—;, P;)P;F(P); that is,F is not strategy-proof.

(2) Let{B1,..., B;} be a partition ofk’ € K and consider any € A",i € N, and
P; € A. Since for allp = 1,..., g the functionsF5» are strategy-proof, we have that

FB(PBR " FB (B, Pr); thatis, forallp = 1, ... q,

—1

outm o= Y a7,

xeFBr(PPp) yerBr (PP pr)

Whereul.B” andi f” are any pair of functions o8, representingDiB” and ﬁiB”, respectively.
Therefore, adding up,

q

q
ooy e o= Y D A0

p=1 xeFbr(pPr) P= yepBp P pPry

Hence,F (P)R; F(P;, P_;); that is,F is strategy-proof. Tha{Bl, ces Bq} is a Cartesian
decomposition oRy = K’ andRr = By + - - - + B, follow immediately from the fact

thatF (P) = qu FBr(PBr)forall P eA". O
p=1

Our strategy of proof for necessity relies heavily on invoking the Gibbard—Satterthwaite
Theorem for the case where there are more than three active components in agofion
the minimal Cartesian decomposition of the range. This is done by proving that, then, there
will be three feasible outcomes which agents can rank as the three most-preferred, and in
any relative order (a “free triple”). BUt 2» must be strategy-proof i is (Proposition A.2).
If FB» was non-dictatorial, we could use it to construct a non-dictatorial and strategy-proof
social choice function over our free triple, which we know is impossible by the Gibbard—
Satterthwaite Theorem. As for the case where a section has two active components only,
notice that we can divide the objects of this section into two sets, such that all the elements
in one of the sets obtains when those on the other do not, and vice versa. Our restriction that
the coalition structures corresponding to these two sets of objects are mutually exclusive
guarantees that no vote can lead to choose at the same time objects from these two active
components. Otherwise, no further restriction is imposed on our coalition structures by
strategy-proofness when only two outcomes arise.

Now, we state and prove that whenever a section in the minimal Cartesian decomposition
of Ry contains more than two active components, then we get a dictator. This is achieved
by showing that a free triple always exists in this case.
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Proposition A.3. Assume that the following properties®f- hold: (1) the minimal Carte-
sian decomposition a®  has a unique section an@) #R r > 3. Then, there existse N
such that for allk € Rp, Wi = {{i}}.

Proof. By properties (1) and (2) there existse 2K such thatZ ¢ Rr. Without loss of
generality, first assume that there exissuch that eitheZ U {x} € Rr or Z\{x} € Rp.
Moreover, by rotating the hypercube to loct® its origin and redefining all coordinates
accordingly, assume that = {¢} and{x} € Rp. Lety € Rp\{x} be arbitrary. We will
show that there existse N such thatV' = W;” = {{i}}. We will distinguish between
two cases.

Casel: There existd € R such thaty € D andM B (D, {#}) N Rr = {D}.

Subcasel.l: AssumeM B (D U {x},{#}) # {{x},D}. Since MB(D,{?}) N R =
{D} there exist8 such thatfy)} # B € D, BU {x} # D,andB U {x} € MB(D U {x},

{(PH NRE.

Subcasel.l.1: AssumeB¢ D. Without loss of generality assume thaf B (BU
{x},{xhNRr ={B U{x}, {x}}. Thenwe can generate, by an additive preference with top
on{#}, the ordering® >1 {x} =1 BU{x}, {x} =2 D =2 BU{x},and{x} =3 BU{x} =2 D,
by an additive preference with top & the orderingsD >* B U {x} =% {x}, BU {x} >°
{x} =° D, andB U {x} =% D =% {x}. Moreover, by associating large negative values to
objects outsideD U {x}, we must be able to put these three alternatives at the tops of the
individual orderings. Therefore, we have a free-triple on the elements of the Far{ge,
andB U {x}. Then the Gibbard—Satterthwaite Theorem implies that there éxisf¢ such
thatwy = Wit = {{i}}.

Subcasel.1.2: AssumeB = D. BecauseM B (D U {x}, {#}) N Rr # {{x}, D} then
DU{x} e Rp. ThenMB (DU {x},{xh NRr = {{x},DU{x}}, MB(DU{x},D)N
Rr ={D, DU {x}}.NoticethatM B (D, {#}) "R = {D}. Therefore, using an argument
similar to the one already used in the proof of Subcase 1.1.1, we have afree triple on elements
of the rangeD, {x} and D U {x}, and again, the Gibbard—Satterthwaite Theorem implies
that there exists € N such thatV' = W;" = {{i}}.

Subcasd.2: Assume B (D U {x}, {#}) = {{x}, D} .

Subcasd.2.1: There exist§ € Ry, suchthatC N (D U {x}) ¢ {{x}, D}.LetC =Cn
DU{x}and without loss of generality assut#eB {C, C}NRy = C.SinceM B {C, {x}}N
Rr = {x}andMB {C, D} N Ry = {D} we have a free triple on elements of the range
D, {x} andC, implying that there exists € N such thatV!* = wit = {i}}, because
y e D.

Subcasd.2.2: ForallC € R, CNDU{x} € {{x}, D}.

Claim 1. Assume that for allC € R either{x} € C or D C C. Then, there exists
A, B € Rr andZ € {{x}, D} such that:

(C1)MB (A, B)NRr = {A, B}.
(C2)Z< ANB.
(C3)MB (A, B)NRr = 4,

whereA = (AU ({x} U D)) \Z andB = (B U ({x} U D)) \ Z.
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Proof of Claim 1. SinceRr has the property that its minimal Cartesian decomposition
has a unique section there exitse Ry andZ € {{x}, D} such thatZ C G andG =
(GU ({x} UD))\Z ¢ RF. Define

W(H,Z):{EGZK | E = (EU (Ix} UD)\Z forEeMB(H,Z)mRF}.

Denote~ Z =xif Z=Dor~Z =D if Z = x.Becauses € MB (G, Z) N RF, then
G € MB (G, Z).SinceG ¢ MB (G,~ Z)NRy thenMB (G, Z) {MB (G, ~ Z)NRp.
Let B be the element in the range with minimia] —distance taZ with the property that
MB (B, Z){MB (B,~ Z) N R. This implies that

MB (B, Z)\B=MB (B.{~ Z}) N Rp. (A.3)

LetA € MB (B, Z)\B be such thaM B (A, B) = {A, B}. Condition f.3) implies that
A e Rp andM B (A, B) N Ry = A. This proves the Claim.

Let A, B € Rp andZ € {{x}, D} be such that conditions (C.1)—(C.3) of Claim 1 hold.
Then we can generate, by an additive preference with tog an{~ Z}, the orderings
A>1B>1A A>24>2B andA =2 A >3 B, by an additive preference with top on
B U {~ z}, the orderingB >* A =% A andB >° A % A, and by an additive preference
with top onB, the orderingd >~° B ~° A. Therefore, we have a free-triple on the elements
of the rangeA, B, andA, implying that here existse N such that\" = wit = {i}}.

Case2: Assume that for everp € Rr such thaty € D, there existsB # D such that
B e MB(D,{#) NRp.

Let D be such that

MB (D, {y}) "R ={D} (A.4)
and letB be such that
MB (B, {#) NRr = {B}. (A.5)

If y € B then we are back to Case 1. Therefore, assumethaB. For eachy € B we can
apply Case 1 and obtain that there exists N such thatVy" = W = {{i}}.

Subcase.l: Assume thatx, y} € Rr. We claim thatM B ({y}, B) N Rr = {B}. To
see it, assume that there exists# B such thatC € MB({y}, B) N Rr. If y € C then
C € MB(D, {y}) N RF contradicting A.4). If y ¢ C thenC C B, contradicting the fact
thatC # B becaus&! B(B, {#}) N"Rr = {B}. Moreover, sinceM B ({y}, D)NRr = {D}
andM B ({y}, {x, y}) N Rr = {x, y} we can generate all orderings @n B, {x, y} (with
these three subsets on the top); therefore, there éxisté such thaiV!* = W;" = {{i}}.

Subcase.2: Assume thatx, y} ¢ Rp. First suppose tha¥’ B ({y}, B) N'Rr = {B}.
SinceMB ({y}, D) NRr = {D}andM B ({y}, {x}) N Rr = {x} (remember, byA.4)
we know thaty € Rr) we can generate all orderings @én B, and{x} (with these three
subsets on the top); therefore, there existsN such thatV)' = W;” = {{i}}. Suppose
thatM B({y}, B) # {B}. We claim thatD = B U{y} and thereforé/ B({y}, B) = {B, D}.
Toseeit, lelC € MB({y}, B).If y e Cthen,byA.4),C =DandC =DU{y}.If y ¢ C
thenC C B and, by A.5), C = B. Now, if MB ({y}, B) N Rr = {B, D} we can also
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generate all orderings an, B, and{x} with two preferences: one with top gr{orderings
D =1 B »1 {x}, D 2 {x} =2 B, and{x} =3 D =3 B) and the other with top of@}
(orderings{x} =% B =% D, B =° D »° {x},andB =% {x} =6 D). O

Proof of Theorem 1.To prove necessity, lgt: A” — 2X be a strategy-proof social choice
function and le{By, ..., B,} be the minimal Cartesian decomposition®, which exists
by Proposition 3.

(1) Assume thak, y € Zy € AC(B),) = {Z1, Z3}. Since{By, ..., B,} is minimal we
have thatZ, N Z; = {#}. Assume thatVy* # W', that is, there exists € W) such that
I ¢ W' Consider any° such thate(P;) N B, = Z, foralli € I andt(P;) N B, = Z>
forall j € N\I. Then,x € F(P) andy ¢ F(P) contradicting thak andy belong to the
same active component &f,.

(2)Assumex € X,y € Y,andAC(B,) = {X, Y}. To obtain a contradiction assume there
existsD € Wy andN\D € WY'. Itis easy to findP such thatr, y € F(P) contradicting
thatx andy belong to different active components B .

(3) Follows from (1) of Proposition A.2 and Proposition A.3.

Sufficiency follows from (2) of Proposition A.2, since it is clear that all social choice
functions defined on each of the sections are onto the active components of the section and
strategy-proof. [
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