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Abstract

We consider social choice problems where a society must choose a subset from a set of objects.
Specifically, we characterize the families of strategy-proof voting procedures when not all possible
subsets of objects are feasible, and voters’ preferences are separable or additively representable.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Many problems of social choice take the following form. There aren voters and a set
K = {1, . . . , k}of objects.Theseobjectsmaybebills consideredbya legislature, candidates
to some set of positions, or the collection of characteristics which distinguish a social
alternative from another. The voters must choose a subset of the set of objects.
Sometimes, any combination of objects is feasible: for example, if we consider the elec-

tion of candidates to join a club which is ready to admit as many of them as the voters
choose, or if we are modelling the global results of a legislature, which may pass or reject
any number of bills. It is for these cases that Barberà et al.[7] provided characterizations of
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all voting procedures which are strategy-proof and respect voter’s sovereignty (all subsets
of objects may be chosen) when voters’ preferences are additively representable, and also
when these are separable. For both of these restricted domains, voting by committees turns
out to be the family of all rules satisfying the above requirements. Rules in this class are
defined by a collection of families of winning coalitions, one for each object; agents vote for
sets of objects; to be elected, an object must get the vote of all members of some coalition
among those that are winning for that object.
Most often, though, some combinations of objects are not feasible, while others are: if

there are more candidates than positions to be filled, only sets of size less than or equal to
the available number of slots are feasible; if objects are the characteristics of an alternative,
some collections of characteristics may be mutually incompatible, and others not. Our
purpose in this paper is to characterize the families of strategy-proof voting procedures
when not all possible subsets of objects are feasible, and voters’ preferences are separable
or additively representable. As in[7], we can identify each set of objects with the value
of its characteristic functions, and thus with some vertex of thek-dimensional hypercube.
Our characterization tells us exactly what social choice functions will be strategy-proof and
onto for each given set of vertices, to be interpreted as the family of feasible subsets from
which society wants and can choose from. Our main conclusions are the following. First,
rules that satisfy strategy-proofness are still voting by committees, with ballots indicating
the best feasible set of objects. Second, the coalition structures for different objects must be
interrelated, in precise ways which depend on what families of sets of objects are feasible.
Specifically, each family of feasible subsets will admit a unique decomposition, which will
dictate the exact form of the strategy-proof and onto social choice functions that can be
defined on it. Third, unlike in[7], the class of strategy-proof rules when preferences are
additively representable can be substantially larger that the set of rules satisfying the same
requirement when voters’ preferences are separable.
Our characterization result for separable preferences is quite negative: infeasibilities

quickly turn any non-dictatorial rule into a manipulable one, except for very limited cases.
In contrast, our characterization result for additive preferences can be interpreted as either
positive or negative, because it has different consequences depending on the exact shape of
the range of feasible choices. The contrast between these two characterization results is a
striking conclusion of our research, because until now the results regarding strategy-proof
mechanisms for these two domains had gone hand to hand, even if they are, of course,
logically independent.
In order to compare our results with others in the literature, it is worth noticing that our

framework, where alternatives (sets of objects) can be expressed as vectors of
zeros and ones, has been extended. Barberà et al.[4] extended the analysis to cover sit-
uations where the objects of choice are Cartesian products of integer intervals, allow-
ing for possibly more than two values on each dimension. The pioneering work of
Border and Jordan[9] considered functions whose range is any Cartesian product of in-
tervals in the real line. In there and in other contexts of multidimensional choice where
the range of the social choice rule is a Cartesian product, strategy-proof rules are neces-
sarily decomposable into rules which independently choose a value for each dimension,
and are themselves strategy-proof (see[10,11] for general expressions of this important
result).
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In [5] (see also[6]) we considered the consequences of introducing feasibility constraints
in that larger framework. The range of feasible choices is no longer a Cartesian product
and this requires a more complex and careful analysis. All strategy-proof rules are still
decomposable, but choices in the different dimensions must now be coordinated in order to
guarantee feasibility.While these previous papers make an important step in understanding
how this coordination is attained for each given shape of the range, it is marred by a strong
assumption on the domain of admissible preferences. Specifically, we assume there that the
bliss point of each agent is feasible. This assumption is not always realistic. Moreover, it
makes the domain of admissible preferences dependent on the range of feasible choices.
Several authors (Serizawa[13] and Answal et al.[1]) have studied the consequences of

specific restrictions on the range, like budget constraints or limitations on the number of
objects that may be chosen. These authors only consider the case of separable preferences,
not the additive case, which is the one providing some positive results. Our results apply
generally and cover all types of infeasibilities within our context: ranges of all shapes are
allowed.
In the present paper we come back to the question of strategy-proofness under constraints

within a more limited framework, the one where only two values can be taken by each of
the components ofk-dimensional vectors, initially considered by Barberà et al.,[7]. This is
done for clarity of exposition, given that in all other respects we are going to substantially
extend the previous analysis. One substantial extension consists in that we can apply our
result regardless of the nature and the form of feasibility restrictions: our results apply to
ranges of any shape. Budget constraints, capacity limits, lower bounds on the number of
objects to be chosen are all specific cases that we cover with a single result. It is also worth
noting that we tackle the case where all separable preferences (and all additive preferences)
are admissible without any further restriction.
Perhaps the most important progress regarding previous results in this literature comes

from the new insights we get on the need for strategy-proof rules to be decomposable. As
already mentioned, when the range of the rule is a Cartesian product, strategy-proofness
requires and allows to decompose global decisions into partial ones, one for each object (or
for each dimension). What we prove is that the decomposition of the range as a Cartesian
product is still essential in order to understand the possibility of defining strategy-proof
rules. Even when a set is not a Cartesian product ofk separate sets of values, one for
each object, it can always be decomposed in different pieces (maybe only one, in the
most degenerate cases), through what we call the minimal Cartesian decomposition. Then,
strategy-proof rulesmust be decomposable into rules that choose in a strategy-proofmanner
within each of these pieces (sections), and then aggregate these choices into a feasible
alternative. This structure generalizes our previous notions of decomposability, which was
restricted before to one of the cases where the decomposition into Cartesian components is
trivial.
The paper is organized as follows. Section 2 contains preliminary notation and definitions

as well as previous results. In Section 3, we introduce specific definitions and notation,
obtain preliminary results, and present our two characterizations: Theorem 1 for additive
preferences andTheorem2 for separable ones. Section 4 contains an important final remark:
theGibbard–SatterthwaiteTheorem is a corollary of our results. Section 5 contains the proof
of Theorem 1, omitted in Section 3.
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2. Preliminaries

Agentsare the elements of a finite setN = {1,2, . . . , n}. The set of objects isK =
{1, . . . , k}. We assume thatn andk are at least 2. Generic elements ofNwill be denoted by
i and j and generic elements ofK will be denoted byx, y, andz. Alternativesare subsets
of K which will be denoted byX, Y, andZ. Subsets ofN will be represented byI and
J. Calligraphic letters will represent families of subsets; for instance,X , Y, andZ will
represent families of subsets of alternatives andW, I, andJ families of subsets of agents
(coalitions).
Preferencesare binary relations on alternatives. LetP be the set of complete, transitive,

and asymmetric preferences on 2K . Preferences inP are denoted byPi , Pj , P ′
i , andP

′
j .

ForPi ∈P andX ⊆ 2K , we denote the alternative inX most-preferred according toPi as
�X (Pi), and we call itthe top ofPi onX . We will use� (Pi) to denote the top ofPi on 2K .
Generic subsets of preferences will be denoted byP̂.
Preferenceprofilesaren-tuplesofpreferences.Theywill be representedbyP = (P1, . . . ,

Pn) or byP = (Pi, P−i ) if we want to stress the role of agentsi’s preference.
A social choice function on̂P is a functionF : P̂n → 2K .

Definition 1. The social choice functionF : P̂n → 2K respects voter’s sovereigntyif for
everyX ∈ 2K there existsP ∈ P̂n such thatF (P ) = X.

The range of a social choice functionF : P̂n → 2K is denoted byRF ; that is,

RF =
{
X ∈ 2K | there existsP ∈ P̂n such thatF (P ) = X

}
.

DenotebyRF the set of chosen objects; namely,

RF = {x ∈ K | x ∈ X for someX ∈ RF } .

Definition 2. A social choice functionF : P̂n → 2K is manipulableif there existP =
(P1, . . . , Pn) ∈ P̂n, i ∈ N , andP ′

i ∈ P̂ such thatF
(
P ′
i , P−i

)
PiF (P ). A social choice

function onP̂ is strategy-proofif it is not manipulable.

Definition 3. A social choice functionF : P̂n → 2K is dictatorial if there existsi ∈ N
such thatF (P ) = �RF

(Pi) for all P ∈ P̂n.

The Gibbard–Satterthwaite Theorem states that any strategy-proof social choice func-
tion on P will be either dictatorial or its range will have only two elements. It would
apply directly if any individual preference over the sets of objects were in the domain.
However, there are many situations where agents’ preferences have specific structure due
to the nature of the set of objects, and this structure may impose meaningful restric-
tions on the way agents rank subsets of objects. We will be interested in two natural
domains of preferences: those that are separable and those that are
additive.
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Definition 4. A preferencePi on 2K isadditiveif there exists a functionui : K → R such
that for allX, Y ⊆ K

XPiY if and only if
∑
x∈X

ui (x) >
∑
y∈Y

ui (y) .

The set of additive preferences will be denoted byA.
An agenti has separable preferencesPi if the division betweengoodobjects ({x}Pi {∅})

andbadobjects ({∅}Pi{x}) guides the ordering of subsets in the sense that adding a good
object leads to abetterset, while adding a bad object leads to aworseset. Formally,

Definition 5. A preferencePi on 2K is separableif for all X ⊆ K and ally /∈ X
X ∪ {y}PiX if and only if {y}Pi {∅} .

LetSbe the set of all separable preferences on 2K .We can give a geometric interpretation
to this set by identifying each object with a coordinate and each setX of objects with a
vertex of ak-dimensional cube; i.e., with thek-dimensional vector of zeros and ones, where
xbelongs toX if and only if that vector has a one inx’s coordinate. Sometimes wewill make
use of this geometric interpretation. For instance, givenX, Y ⊆ K theminimal box on X
andYis the smallest subcube containing the vectors corresponding toX andY; namely,

MB (X, Y ) =
{
Z ∈ 2K | (X ∩ Y ) ⊆ Z ⊆ (X ∪ Y )

}
.

Following with this interpretation, it is easy to see that a preferencePi is separable if for
all Z andY ∈ MB (� (Pi) , Z) \Z, YPiZ.

Remark that additivity implies separability but the converse is false with more than two
objects. To see that, letK = {x, y, z} be the set of objects and consider the separable
preference

{x, y, z}Pi{y, z}Pi{x, z}Pi{x, y}Pi{x}Pi{y}Pi{z}Pi{∅},
which is not additive since{x}Pi{y} and{y, z}Pi{x, z}. Geometrically, additivity imposes
the condition that the orderings of all vertices on each parallel face of the hypercube coin-
cide while separability admits the possibility that some vertices of two parallel faces have
different orderings. This geometric interpretation will become very useful to understand the
differences of our two characterizations.
To define voting by committees as in[7] we need the concept of a coalition structure.

Definition 6. A coalition structureW is a nonempty family of nonempty coalitions ofN,
which satisfies coalition monotonicity: ifI ∈ W andI ⊆ J , thenJ ∈ W. Coalitions in
W are calledwinning. A coalitionI ∈ W is aminimal winning coalitionif for all J�I we
have thatJ /∈ W.

Given a coalition structureW, we will denote byWm the set of its minimal winning
coalitions. A coalition structureW is dictatorial if there existsi ∈ N such thatWm =
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{{i}}. Associated to each family of coalition structures (one for each object) we can define
a special type of social choice functions.

Definition 7. A social choice functionF : P̂n → 2K is voting by committees, if for each
x ∈ K, there exists a coalition structureWx such that for allP = (P1, . . . , Pn) ∈ P̂n,

x ∈ F(P ) if and only if {i ∈ N | x ∈ �RF
(Pi)} ∈ Wx.

A social choice functionF is calledVoting by quota q(1�q�n) if for all x the coalition
structureWx is equal to the family of coalitions with cardinality equal or larger thanq.
We state, as Proposition 1, Barberà et al.[7]’s characterization of voting by committees

as the class of strategy-proof social choice functions onS, as well as onA, satisfying voter’s
sovereignty.

Proposition 1. A social choice functionF : Sn → 2K (or, F : An → 2K ) is strategy-proof
and satisfies voter’s sovereignty if and only if it is voting by committees.

To cover social choice problems with constraints we have to drop the voter’s sovereignty
condition of Proposition 1. But a result in[5] tells us that the only strategy-proof rules in
this case must still be of the same form: this is stated in Proposition 2.

Proposition 2. AssumeF : Sn → 2K (or, F : An → 2K ) is strategy-proof. Then, F is
voting by committees.1

3. Two characterization results

3.1. The need to coordinate: two examples and an outline

Because of feasibility constraints, not all voting by committees can be guaranteed to
always select a feasible alternative. The exact nature of the constraints, i.e., the shape
of the range, will determine which combinations of coalition structures can constitute a
proper social choice function for this range. Example 1 illustrates this fact. Moreover, under
the presence of infeasibilities, there are voting by committees that, although respecting
feasibility, are not strategy-proof. Example 2 illustrates this possibility.

Example 1. Let K = {x, y} be the set of objects andN = {1,2,3} the set of agents.
Assume that{∅}, {x}, and{y} are feasible but{x, y} is not.Voting by quota 1 does not respect
feasibility because for any preference profileP, with the property that�(P1) = �(P2) = {x}
and�(P3) = {y}, both x andy should be elected, which is infeasible. However, voting
by quota 2 does respect feasibility becausex andy cannot get simultaneously two votes
(remember, agents cannot vote for infeasible outcomes) since the complementary coalition
of each winning coalition forx is not winning fory, and vice versa.

1 It is easy to check that the proof of Proposition 2 in[5] which covers the case of separable preferences also
applies to the smaller domain of additive preferences.
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This idea will play an important role in our characterization with additive preferences.
As suggested by our example, when defining a social choice function by means of coalition
structures, we must guarantee that if all agents vote for a feasible alternative, then the
result must also be a feasible alternative. This was the role played by the intersection
property in[5]. Here we shall ensure it by a combination of conditions, one of which will
be the choice of mutually exclusive coalition structures under certain situations. Mutually
exclusive coalition structures, following the hint provided in the previous example, are
formally defined as follows.

Definition 8. We say that two coalition structuresW andW ′ aremutually exclusiveif
D ∈ W impliesN\D /∈ W ′ andD ∈ W ′ impliesN\D /∈ W.

The interested reader may check that our characterization results (Theorems 1 and 2)
guarantee that the intersection property in[5] will be satisfied by the rules we define in each
case.

Example 2. LetK = {x, y}be thesetof objectsandN = {1,2,3} thesetof agents.Assume
that {∅}, {x}, and{y} are feasible but{x, y} is not. Consider the social choice functionF
defined by voting by quota 3 (which respects feasibility) and letPbe any additive (as well as
separable) preference profile such that�(P2) = �(P3) = {y} and{x, y}P1{x}P1{y}P1{∅}.
Since�2K\{x,y}(P1) = {x},y receives two votes andxone; therefore,F(P ) = {∅}. However,
if agent 1 declares the preferenceP ′

1 where{y}P ′
1{x, y}P ′

1{∅}P ′
1{x}, theny receives three

votes andx none; that is,F(P ′
1, P2, P3) = {y}P1{∅} = F(P1, P2, P3). Hence,F is not

strategy-proof.

The purpose of our two characterizations is to identify exactly the subfamilies of coalition
structures that simultaneously respect feasibility and are strategy-proof for the domains of
additive and separable preferences.
We begin with some intuition about the nature of our results. For that, we first remind the

reader about the essential features of voting by committees when there are no constraints,
as in[7]. There, the choice of a set can be decomposed into a family of binary choices, one
for each object. In each case, society decides whether the object should or should not be
retained, and the union of selected objects amounts to the social alternative. If the methods
used to decide upon each object are each strategy-proof, then so is the method resulting
from combining them into a global decision, as long as the agent’s preferences are additive
or separable. Agents should be asked to express their best set, and under the expressed
domain restrictions this is equivalent to expressing those objects that they would prefer to
be included in the social decision, rather than not.
In our case, a first difference is that the choice of sets may not be decomposable to the

extreme of allowing for independent decisions on each object. Our results tell us precisely
about the extent to which global decisions can be decomposed, and say how to coordinate
the decisions within groups of objects that require joint treatment. Indeed, in the presence of
infeasibilities, the decision on what objects to choose, and which ones not to, can no longer
be decomposed into object-by-object binary decisions. For example, choosingxmight only
be possible ify is not chosen: then the choices regardingx andymust be joint. Similarly,
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zmight only be chosen ifw is, and again decisions involving these two objects need to be
coordinated. Yet, if all feasible choices ofx andy, when coupled with any feasible choice
for zandw, turn out to be feasible, there is still room for decomposition of the choices in
two blocks of objects. If, on the contrary, further restrictions must be taken into account,
whereby certain feasible choices fromx andy become incompatible with some feasible
choices fromz andw, then decomposition is not possible. The paper provides a precise
statement about the extent to which decisions on what sets to choose can be decomposed
into partial decisions involving subsets (we call each part of the decomposition a section),
in the presence of feasibility constraints. Moreover, we discuss the characteristics of the
coalition structures that must be used in order to coordinate the choices of objects within
each of the sections.

3.2. The minimal Cartesian decomposition of a family of subsets

In this subsection, we shall describe the way in which any family of subsets can be
decomposed uniquely into what we call a minimal Cartesian decomposition. This will be
exactly the decomposition that will allow us to make our previous statements precise, as
expressed in Theorems 1 and 2, to be found in Sections 3.3 and 3.4. As we proceed, and in
order to help the reader through the new definitions, we introduce an example to illustrate
the new concepts.

Example 3. LetK = {a, b, z, w, t} be the set of objects and assume that the set of feasible
alternativesM is

{{b} , {b, t} , {b, z} , {b, z, t} , {b, z,w} , {b, z,w, t}} .
Notice that (1)a is never chosen, (2)b is always chosen, (3)w is only chosen ifz is, and
(4) t can be chosen or not, whatever happens.

Given a social choice functionF : P̂n → 2K and a subsetB of RF define theactive
components of B in the rangeas

AC (B) = {Y ∩ B | Y ∈ RF } .
Active components ofB are subsets ofBwhose union with some subset inRF \B is part of
the range.

Example3(Continued).Theactive components of the sets{z}, {z,w}and{t}areAC ({z}) =
{{∅} , {z}},AC ({z,w}) = {{∅} , {z} , {z,w}}, andAC ({t}) = {{∅} , {t}}, respectively.

Now, givenB ′ ⊆ B ⊆ RF define therange complement ofB ′ relative to Bas

CBF
(
B ′) = {

C ⊆ RF \B | B ′ ∪ C ∈ RF

}
.

The range complement of a subsetB ′ of B is the collection of sets inRF \B whose union
withB ′ is in the range. Notice thatAC (B) can also bewritten as{X ⊆ B | X∪Y ∈ RF . for
someY ∈ CBF (X)}.
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Example 3(Continued). The range complement of the subsets{∅}, {z}, and{z,w} relative
to {z,w} coincide and they are all equal to{b} + {{∅} , {t}}. 2

A section is a group of objects with the property that the decision among their active
components can be made without paying attention to the infeasibilities involving objects
on its complement.

Definition 9. A subset of objectsB ⊆ K is asectionof RF if for all active components
B ′, B ′′ ∈ AC (B) we haveCBF

(
B ′) = CBF (B

′′
).

Example 3(Continued).The set{z,w} is a section ofRF becauseAC ({z,w}) = {{∅} , {z} ,
{z,w}} (notice that the subset{w} is not an active component of{z,w}) and, as we have
already seen,C{z,w}

F ({∅}) = C{z,w}
F ({z}) = C{z,w}

F ({z,w}) = {b} + {{∅} , {t}}.

Remark 1. B = RF is a section ofRF becauseCBF (X) = {∅} for all active components
X ∈ AC (RF ) = RF .

Remark 2. B is a section ofRF if and only if, for allB ′ ∈ AC(B),
RF = AC(B)+ CBF (B ′).

Lemma 1. Let B be a section ofRF and letB1 and B2 be such thatB = B1 ∪ B2,
B1 ∩ B2 = {∅}, andB1 is a section ofRF . Then, B2 is also a section ofRF .

Proof.To show thatB2 is a section ofRF , letX2, Y2 ∈ AC (B2) be arbitrary.Wemust show
CB2F (X2) = CB2F (Y2) . (1)

By definition of active component ofB2, we can findX, Y ∈ RF such that

X2 = X ∩ B2 ∈ AC(B2) (2)

and

Y2 = Y ∩ B2 ∈ AC(B2).
Moreover, by definition of range complement ofX2 andY2 relative toB2,

X ∩ Bc2 ∈ CB2F (X2)
and

Y ∩ Bc2 ∈ CB2F (Y2),
2Given two families of subsets of objectsX andY we denote byX + Y the sum of the two; namely,

X + Y = {X ∪ Y ∈ 2K | X ∈ X andY ∈ Y}.
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where, given a setZ ⊆ K, Zc ≡ K\Z. Notice, that to show that (1) holds, it is sufficient
to show thatY ∩ Bc2 ∈ CB2F (X2); that is,

X2 ∪ (Y ∩ Bc2) ∈ RF .

By (2), and sinceBc2 = B1 ∪ Bc,
X2 ∪ (Y ∩ Bc2)= (X ∩ B2) ∪ (Y ∩ Bc2)

= (X ∩ B2) ∪ (Y ∩ B1) ∪ (Y ∩ Bc).

Claim 1. (X ∩ B1) ∪ (X ∩ B2) ∪ (Y ∩ Bc) ∈ RF .

Proof. SinceY ∈ RF , (Y ∩ B) ∪ (Y ∩ Bc) ∈ RF . Therefore,Y ∩ Bc ∈ CBF (B̄) for some
B̄ ∈ AC(B). Moreover, sinceB is a section andX ∩ B ∈ AC(B), Remark 2 implies that
(X ∩ B) ∪ (Y ∩ Bc) ∈ RF . Hence,(X ∩ B1) ∪ (X ∩ B2) ∪ (Y ∩ Bc) ∈ RF , which is the
statement of the claim.

Therefore, by Claim 1 and the hypothesis thatB1 is a section,

(X ∩ B2) ∪ (Y ∩ Bc) ∈ CB1F (B ′
1)

for all B ′
1 ∈ AC(B1). Because(Y ∩B1) ∈ AC(B1)we have, by Remark 2,(X∩B2)∪ (Y ∩

B1) ∪ (Y ∩ Bc) ∈ RF . Hence,(Y ∩ Bc2) ∈ CB2F (X2). �

Definition 10. A partition
{
B1, . . . , Bq

}
of RF is aCartesian decomposition ofRF if for

all p = 1, . . . , q, Bp is a section ofRF . A Cartesian decomposition is calledminimal if
there is no finer Cartesian decomposition ofRF .

Example 3 (Continued). The partition{{b} , {z,w} , {t}} of RF is the minimal Cartesian
decomposition ofRF , since one can check that all of its elements are minimal sections.
The section{z,w} is minimal since neither{z} nor {w} are sections because, for instance,
AC ({w}) = {{∅} , {w}} but

C{w}
F ({∅}) = {b} + {{∅} , {z}} + {{∅} , {t}}

and

C{w}
F ({w}) = {b} + {z} + {{∅} , {t}} ,

and hence,C{w}
F ({∅}) �= C{w}

F ({w}).
The proof that all other components of the decomposition are also minimal sections is

similar and left to the reader.

Remark 3. Let
{
B1, . . . , Bq

}
be a partition ofRF . Then,

{
B1, . . . , Bq

}
is a Cartesian

decomposition ofRF if and only if

RF = AC (B1)+ · · · + AC (
Bq

)
.
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Wewant to show (Proposition 3 below) that, given any social choice functionF, its corre-
sponding setRF has a uniqueminimal Cartesian decomposition. In the proof of Proposition
3 we will use the following Lemma.

Lemma 2. Let B1 andB2 be two sections ofRF . ThenB = B1 ∪ B2 is also a section
ofRF .

Proof. LetB = B1∪B2 and assume thatB1 andB2 are sections ofRF . LetX, Y ∈ RF be
arbitrary. They can also be written as

X = (X ∩ B) ∪ (X ∩ Bc)
and

Y = (Y ∩ B) ∪ (Y ∩ Bc).
To show thatB is a section, it is sufficient to show that(X ∩B)∪ (Y ∩Bc) ∈ RF . Rewrite
X andYas

X = (X ∩ (B1\B2)) ∪ (X ∩ (B2\B1)) ∪ (X ∩ (B1 ∩ B2)) ∪ (X ∩ Bc)
and

Y = (Y ∩ (B1\B2)) ∪ (Y ∩ (B2\B1)) ∪ (Y ∩ (B1 ∩ B2)) ∪ (Y ∩ Bc).
SinceB1 is a section,(Y ∩(B1\B2))∪(Y ∩(B1∩B2)) and(X∩(B1\B2))∪(X∩(B1∩B2))
belong toAC(B1), and(Y ∩ (B2\B1))∪ (Y ∩Bc) ∈ CB1F ((Y ∩ (B1\B2))∩ (Y ∩ (B1∩B2))).
Therefore,

(X ∩ (B1\B2)) ∪ (X ∩ (B1 ∩ B2)) ∪ (Y ∩ (B2\B1)) ∪ (Y ∩ Bc) ∈ RF .

By definition of the range complement of(Y ∩ (B2\B1))∪ (X ∩ (B1∩B2)) relative toB2,
(X ∩ (B1\B2)) ∪ (Y ∩ Bc) ∈ CB2F ((Y ∩ (B2\B1)) ∪ (X ∩ (B1 ∩ B2))). (3)

Also, sinceX andYbelong toRF andB2 is a section,

(X ∩ B2) ∪ (Y ∩ Bc2) ∈ RF . (4)

Rewriting (4), we have

(Y ∩ (B1\B2)) ∪ (X ∩ (B2\B1)) ∪ (X ∩ (B1 ∩ B2)) ∪ (Y ∩ Bc) ∈ RF .

Therefore,

(X ∩ (B2\B1)) ∪ (X ∩ (B1 ∩ B2)) ∈ AC(B2). (5)

Then, by (3) and (5), the fact again thatB2 is a section, and Remark 2,

(X ∩ (B2\B1)) ∪ (X ∩ (B1 ∩ B2)) ∪ (X ∩ (B1\B2)) ∪ (Y ∩ Bc) ∈ RF .

This implies that(X ∩ B) ∪ (Y ∩ Bc) ∈ RF. Hence,B is a section ofRF . �
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Proposition 3. RF has a unique minimal Cartesian decomposition.

Proof.Assume not. Let{B11, . . . , B1q1} and{B21, . . . , B2q2} be two distinct minimal Cartesian
decompositions ofRF . There exists at least one pair such thatB1p1 ∩B2p2 �= {∅} andB1p1 �=
B2p2. By Lemma 2,B

1
p1

∪ B2p2 is a section ofRF . By Lemma 1,B1p1\B2p2 is also a section
of RF implying, again by Lemma 1, that{B11, . . . , B1q1} was not minimal. �

3.3. Additive preferences

We can now state our first characterization.

Theorem 1. A social choice functionF : An → 2K is strategy-proof if and only if it is
voting by committees with the following properties:
(1.1)Wx andWy are equal for all x and y in the same active component of any section

with two active components inRF ’sminimal Cartesian decomposition,
(1.2)Wx andWy are mutually exclusive for all x and y in different active components of

the same section inRF ’s minimal Cartesian decomposition,when there are only two active
components in this section, and
(1.3)Wx is dictatorial and equal for all x’s in the same section inRF ’sminimal Cartesian

decomposition, when this section has more than two active components.

The proof of Theorem 1 is in the Appendix at the end of the paper.
Our Theorem refers to the setRF , and is thus stated as if we started from a given function

F and then described the necessary and sufficient conditions for thisF to be strategy-proof.
We can take another point of view, which is also compatible with our purposes. Start from
any familyM of subsets ofK. InterpretM as the set of feasible outcomes. We can then
re-read Theorem 1 as telling us everything about the strategy-proof social choice functions
which can be defined ontoM (which will then be the range of these functions). True, there
may also exist other strategy-proof functions which start with a feasible setM and end up
having a subset ofM as the range. But then, if there are alternatives that the designer is
willing to give up as possible outcomes, wemight as well reinterpret them and include these
outcomes among those which we consider unfeasible, for practical purposes. Example 4
below illustrates the statement of Theorem 1.

Example 4. LetK = {a, b, x, y, z, w, r, s, q, t} be the set of objects and assume that the
set of feasible alternatives is

M = {{b}} + {{∅} , {x} , {y}} + {{∅} , {z} , {z,w}} + {{r} , {s, q}} + {{∅} , {t}} .
Any voting by committeesF : An → 2K will be strategy-proof and will haveRF = M as
long as it satisfies the following properties: (a) by (1.3) of Theorem 1,Wm

x = Wm
y = {{i1}}

andWm
z = Wm

w = {{i2}} for somei1, i2 ∈ N ; (b) by (1.1) of Theorem 1,Wm
s = Wm

q ;
and (c) by (1.2) of Theorem 1,Wr andWs are mutually exclusive. To illustrate these
conditions, letN = {1,2} be the set of agents and consider the voting by committeesF
whereWm

x = Wm
y = {{1}}, Wm

z = Wm
w = {{2}} , andWm

a = Wm
b = Wm

r = Wm
s =
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Wm
q = Wm

t = {{1,2}}. Observe thatF satisfies properties (a), (b), and (c), and hence, by
Theorem 1, it is strategy-proof on the domain of additive preferences andRF = M.

3.4. Separable preferences

In contrast with the unconstrained case, our results for separable preferences are quite
different (andmuchmore negative) than for additive preferences. Essentially, this is because
in the presence of infeasibilities, agents are not asked to vote for their preferred sets, but
rather for their preferred feasible sets. Hence, they may end up voting for their second best,
their third best, etc. Now, some of the individual objects they vote for may be retained,
and others not. Likewise, some objects they do not vote for can obtain. What matters for
strategy proofness is whether the best set for each agent among those that contain some
externally fixed objects (those that are chosen in spite of the agent’s negative vote) and
do not contain some others (those that are not chosen even if the agent supports them)
is the set that contains, in addition to those, as many elements from the agent’s preferred
feasible set. This is the case for additive preferences in all cases. It is also the case for
separable preferences if the first best for the agent is feasible, but not necessarily other-
wise. That is why, in the presence of infeasibilities, declaring the best feasible set may
not be a dominant strategy for some voters, even when voting by committees are used
(except if the first best is always feasible, a situation studied in[5]). Whereas it is always
a dominant strategy for additive preferences. This accounts for the differences in results
under these two different domains. To further illustrate this general point, we can go back
to Example 3.

Example 3 (Continued). Let F : S2 → 2K be defined by the coalition structuresWm
z =

Wm
w = {{1}} , andWm

a = Wm
b = Wm

t = {{1,2}}. To see thatF is manipulable on the
domain of separable preferences, consider any separable preferenceP1 with the following
properties:
(1) � (P1) = {b,w, t} and�RF

(P1) = {b, z,w, t} .
(2) {b, z,w, t}P1 {b, t} and{b}P1 {b, z,w} .
Observe thatP1 is not additive because addingt to {b, z,w} and to{b} inverts its ordering.

Take any separable profile of preferences
(
P ′
1, P2

)
with the properties that�

(
P ′
1

) = {b} and
� (P2) = {b, z,w}. Then,

F
(
P ′
1, P2

) = {b}P1 {b, z,w} = F (P1, P2) ,

implying thatF is manipulable by agent 1 at profile(P1, P2) with the preferenceP ′
1.

Theorem 2 below characterizes the family of strategy-proof social choice functions when
voters’ preferences are separable. Our result shows that the class of strategy-proof social
choice functions under additive representable preferences identified in Theorem 1 is dras-
tically reduced as a consequence of this enlargement of the domain of preferences. This
is an important novelty with respect to the situation without constraints. Now, only social
choice functions with Cartesian product ranges (up to constant and/or omitted objects,) are
strategy-proof. Namely, the range ofF has to be a subcube: all sections of the minimal
Cartesian decomposition ofRF (the set of not omitted objects) are singletons, either with



198 S. Barberà et al. / Journal of Economic Theory 122 (2005) 185–205

the object itself as the unique active component (constant object) or else with the object
itself andthe empty set as the two active components. Formally,

Theorem 2. A social choice functionF : Sn → 2K is strategy-proof if and only if it is
voting by committees with the following property:
(2.1) If #RF �3 then either F is dictatorial or all sections of the minimal Cartesian

decomposition ofRF are singletons.

Proof. Let F : Sn → 2K be a voting by committees satisfying property (2.1). IfF is
dictatorial then it is obviously strategy-proof. If #RF �3 and all sections of the minimal
Cartesian decomposition ofRF are singletons, then the set of active components in the
range of each objectx of this Cartesian decomposition ofRF is either{{∅} , {x}} or {{x}}.
When the set of active components is of the form{{x}}, this means that objectx is always
chosen. When the set of active components is of the form{{∅} , {x}}, then voters have a
choice between includingx and not doing it. Leaving aside the constant elements, which
have no consequence for strategy-proofness, the remaining choices between the objects
with active components of the form{{∅} , {x}} are of the type contemplated by Barberà et
al. [7]. Hence, since we assume voting by committees, thenF is strategy-proof.
For the converse, assume thatF is strategy-proof. By Proposition 2,F is voting by

committees. To show thatF satisfies property (2.1) assume #RF �3. Since all additive
preferences are separable, Theorem 1 applies to the subdomain of additive preferences.
Therefore, the coalition structures associated toF satisfy properties (1.1), (1.2), and (1.3)
of Theorem 1. AssumeF is non-dictatorial. Then, property (1.3) implies that the minimal
Cartesian decomposition ofRF cannot consist of just one sectionwith strictlymore than two
active components. Therefore, and since #RF �3, the minimal Cartesian decomposition
of RF contains at least two sections. Now, notice that when preferences are separable but
not additively representable, the active components of a section can be ordered differently
among themselves, depending on which objects are present in another section. That is,
for each pair of sectionsB1 andB2 of the minimal Cartesian decomposition ofRF there
exist at least one separable preferencePi ∈ S, X1, Y1 ∈ AC (B1), X2, Y2 ∈ AC (B2), and
Z ⊆ RF \ (B1 ∪ B2) such that

(X1 ∪X2 ∪ Z)Pi (X1 ∪ Y2 ∪ Z) and (Y1 ∪ Y2 ∪ Z)Pi (Y1 ∪X2 ∪ Z) . (6)

This can now be used to show that we cannot have a section with more than two active com-
ponents together with another section having more than one active component. To prove
it, it is enough to construct profiles where the presence of an object affects the ordering of
the active components in another section. Assume that a sectionB1 has the property that
#AC (B1) �3. Then, by property (1.3) of Theorem 1, for allx ∈ B1,Wx is dictatorial (i.e.,
Wm
x = {{i}} for somei ∈ N ). Also assume that there exists another sectionB2 such that

#AC (B2) �2. Then, for ally ∈ B2,Wm
y = {{i}}, since there exists a separable preference

Pi satisfying (6). By applying the same argument we could prove that dictatorship extends
to all objects belonging to sections with more than two active components. Therefore, all
sections have either only one active component (the objects that are always selected) or they
have just two active components. Following a similar argument to the one already used to
establish (6) it is immediate to see that if a section has two active components they are of
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the form{{∅}, {x}}. Hence, all sections in the minimal Cartesian decomposition ofRF are
singletons. �

4. Final remark

Until now, we have taken the dimension of our problems (i.e., the number of objects),
as well as the feasibility constraints, as given data. Our analysis admits another reading
without any formal change, except for its interpretation.
Consider a situation where society faces four alternatives,a,b, c, andd. One possibility is

that each of these alternativesmight be described by two characteristics, and that identifying
a = (0,0), b = (1,0), c = (0,1), andd = (1,1) provides a good description of the actual
choices (this particular choicewould indicate thataandcare similar in the first characteristic
but differ on the second, etc.). It may also be, in another extreme, that these four alternatives
share nothing relevant in common. They can still be represented as vectors of zeros and
ones, but now it is better to embed them inR4, and identify them asa = (1,0,0,0),
b = (0,1,0,0), c = (0,0,1,0), andd = (0,0,0,1). There may still be intermediate cases
where three characteristics are necessary and sufficient to distinguish between these four
alternatives. Two examples may be given by the cases

a = (1,0,0) , b = (1,1,0) , c = (1,0,1) , andd = (0,0,0)

or

a = (1,0,0) , b = (0,1,0) , c = (0,0,1) , andd = (0,1,1) .

In the four- and three-dimensional cases, these four alternatives are only some of the con-
ceivable verticesof thecorrespondingcubes.Other combinationsof zerosandones represent
conceivable but unfeasible choices.
These examples suggest that the objects in our model (interpreted as characteristics) may

be takenaspartial aspects of theoverall alternatives (whose role is played in ourmodel by the
feasible sets). This interpretation is not restrictive: any alternative (out of a finite set) can be
described by a (finite) set of characteristics.What is restrictive is that once we identify each
alternative with a set of characteristics (thus embedding it into somel-dimensional cube),
we also determine the shape of the set of feasible alternatives, and this has consequences
on the class of preferences which pass the test of additivity (or separability).3

In fact, thanks to the above observations, we can conclude by arguing that the Gibbard–
Satterthwaite Theorem arises as a particular corollary of our Theorem 1. Indeed, take any
finite setA = {x, y, . . . , w} of k alternatives (k > 2). Identify them with thek unit vectors
and assume that the set of feasible alternativesM is {{x} , {y} , . . . , {w}}. Notice that all
3Actually, identifying the alternatives of a social choice problem as points in a grid can give us some interesting

insights. In particular, many problems can be rewritten as ones where alternatives are strings of 0 or 1 vectors.
For example, the setting of Barberà et al.[7] can be viewed as defining rules to choose among the vertices of a
hypercube. This point of view has been expressed and used in[2,3,8]. It is the object of recent work by Nehring
and Puppe[12].
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preferences overA are restrictions of some additive preference on thek-dimensional cube.
Hence, we are considering the universal domain assumption of the Gibbard–Satterthwaite
result. LetF : An → 2A be such thatRF = {{x} , {y} , . . . , {w}}. The minimal Cartesian
decomposition ofRF (= A) contains only the sectionB = {x, y, . . . , w}, whose set of
active components isAC (B) = {{x} , {y} , . . . , {w}}. Since #AC (B) > 2, Property (1.3)
of Theorem 1 tells us that only dictatorial rules are strategy-proof on additive preferences.
This is the conclusion we wanted.4
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Appendix A. Proof of Theorem 1

The proof of Theorem 1 is based on a decomposition argument that applies an important
result of Le Breton and Sen[10] to our context. This argument, which will be exploited
in the proof of Theorem 1, is expressed as Proposition A.2 below. But before, we need the
following notation.
LetPi be an additively representable preference on 2K and consider a subsetBofK. Let

PBi stand for the preferences on 2B generated by the utilities which representPi . LetAB be
the set of additive preferences on 2B . For a profileP of preferences on 2K , PB will denote
the profile of preferences so restricted, for alli ∈ N .
Given a strategy-proof social choice functionF : An → 2K and a subsetBof objects, let

FB: A n
B → 2B be defined so that for allPB ∈A n

B

FB
(
PB

)
= F (P ) ∩ B,

whereP is any additive preference such thatPB is generated by the utilities which repre-
sentP.

4 In an earlier paper[5] we had already used the same embedding or identification of alternatives with unit
vectors in order to prove the Gibbard–Satterthwaite Theorem. In the earlier paper, this was a corollary of a
different characterization than the one we offer here. As a result, our arguments in the present paper, which apply
Theorem 1, are simpler and more direct than in the previous case.
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Remark A.1. Notice that, sinceF : An → 2K is a strategy-proof social choice function, it

is voting by committees (byProposition 2). Hence, for anyB ⊆ K,F (P )∩B = F
(
P̂

)
∩B

for all P, P̂ ∈An such thatPB = P̂ B . Therefore,FB is well-defined.

Proposition A.2. (1) LetF : An → 2K be a social choice function and let
{
B1, . . . , Bq

}
be a Cartesian decomposition ofRF . If F is strategy-proof thenFB1, . . . , FBq are strategy-

proof andF (P ) =
q⋃
p=1

FBp
(
PBp

)
for all P ∈An.

(2) Conversely, let
{
B1, . . . , Bq

}
be a partition ofK ′ ⊆ K and let

{B1, . . . ,Bq
}
be a

collection of subsets of objects, withBp ⊆ 2Bp for all p = 1, . . . , q. LetFBp: A n
Bp

→ Bp
be a collection of onto social choice functions, one for eachp = 1, . . . , q. If FB1, . . . , FBq

are strategy-proof, then the functionF (P ) =
q⋃
p=1

FBp
(
PBp

)
for all P ∈ An is strategy-

proof,
{
B1, . . . , Bq

}
is a Cartesian decomposition ofRF = K ′, andRF = B1+ · · · + Bq .

Proof. (1)Assume
{
B1, . . . , Bq

}
is a Cartesian decomposition ofRF and letP ∈An. Then,

F(P )= F(P ) ∩ RF by definition ofRF

=
q⋃
p=1

[F(P ) ∩ Bp] since{B1, . . . , Bq} is a partition ofRF

=
q⋃
p=1

FBp(PBp) by definition ofFBp andPBp .

To obtain a contradiction, assume thatFBp is not strategy-proof; that is, there existPBp ,

i, andP̂
Bp
i such thatFBp(P̂

Bp
i , P

Bp
−i )P

Bp
i FBp(PBp). Therefore, and since preferences are

additive,

∑

y∈FBp (P̂ Bpi ,P
Bp
−i )

u
Bp
i (y) >

∑

y∈FBp (PBp )
u
Bp
i (y), (A.1)

for anyu
Bp
i : Bp → R representingP

Bp
i .

Take anyP ∈An generatingPBp andP̂i generatingP̂
Bp
i with the property that

P
Bp′
i = P̂

Bp′
i (A.2)

for all p′ �= p. For eachp′ �= p, take anyu
Bp′
i representingP

Bp′
i . Then, by (A.1),

∑
p′ �=p

∑

x∈FBp′
(P
B
p′
)

u
Bp′
i (x) +

∑

y∈FBp (PBp )
u
Bp
i (y)
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=
∑
p′ �=p

∑

x∈FBp′
(P̂
B
p′

i ,P
B
p′

−i )

u
Bp′
i (x) +

∑

y∈FBp (PBp )
u
Bp
i (y)

<
∑
p′ �=p

∑

x∈FBp′
(P̂
B
p′

i ,P
B
p′

−i )

u
Bp′
i (x) +

∑

y∈FBp (P̂ Bpi ,P
Bp
−i )

u
Bp
i (y),

where the equality follows from (A.2) and the inequality follows from (A.1). Therefore,
F(P̂−i , Pi)PiF (P ); that is,F is not strategy-proof.
(2) Let

{
B1, . . . , Bq

}
be a partition ofK ′ ⊆ K and consider anyP ∈ An, i ∈ N , and

P̂i ∈ A. Since for allp = 1, . . . , q the functionsFBp are strategy-proof, we have that

FBp(PBp)R
Bp
i F

Bp(P̂
Bp
i , P

Bp
−i ); that is, for allp = 1, . . . , q,

∑

x∈FBp (PBp )
u
Bp
i (x) �

∑

y∈FBp (P̂ Bpi ,P
Bp
−i )

û
Bp
i (y),

whereu
Bp
i andû

Bp
i are any pair of functions onBp representingP

Bp
i andP̂

Bp
i , respectively.

Therefore, adding up,

q∑
p=1

∑

x∈FBp (PBp )
u
Bp
i (x) �

q∑
p=1

∑

y∈FBp (P̂ Bpi ,P
Bp
−i )

û
Bp
i (y).

Hence,F(P )RiF (P̂i, P−i ); that is,F is strategy-proof. That
{
B1, . . . , Bq

}
is a Cartesian

decomposition ofRF = K ′ andRF = B1 + · · · + Bq follow immediately from the fact

thatF (P ) =
q⋃
p=1

FBp
(
PBp

)
for all P ∈An. �

Our strategy of proof for necessity relies heavily on invoking the Gibbard–Satterthwaite
Theorem for the case where there are more than three active components in a sectionBp of
the minimal Cartesian decomposition of the range. This is done by proving that, then, there
will be three feasible outcomes which agents can rank as the three most-preferred, and in
any relative order (a “free triple”). ButFBp must be strategy-proof ifF is (PropositionA.2).
If FBp was non-dictatorial, we could use it to construct a non-dictatorial and strategy-proof
social choice function over our free triple, which we know is impossible by the Gibbard–
Satterthwaite Theorem. As for the case where a section has two active components only,
notice that we can divide the objects of this section into two sets, such that all the elements
in one of the sets obtains when those on the other do not, and vice versa. Our restriction that
the coalition structures corresponding to these two sets of objects are mutually exclusive
guarantees that no vote can lead to choose at the same time objects from these two active
components. Otherwise, no further restriction is imposed on our coalition structures by
strategy-proofness when only two outcomes arise.
Now, we state and prove that whenever a section in theminimal Cartesian decomposition

of RF contains more than two active components, then we get a dictator. This is achieved
by showing that a free triple always exists in this case.
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Proposition A.3. Assume that the following properties ofRF hold: (1) the minimal Carte-
sian decomposition ofRF has a unique section and(2) #RF �3.Then, there existsi ∈ N
such that for allx ∈ RF , Wm

x = {{i}}.

Proof. By properties (1) and (2) there existsZ ∈ 2K such thatZ /∈ RF . Without loss of
generality, first assume that there existsx such that eitherZ ∪ {x} ∈ RF or Z\{x} ∈ RF .
Moreover, by rotating the hypercube to locateZ to its origin and redefining all coordinates
accordingly, assume thatZ = {∅} and{x} ∈ RF . Let y ∈ RF \{x} be arbitrary. We will
show that there existsi ∈ N such thatWm

x = Wm
y = {{i}}. We will distinguish between

two cases.
Case1: There existsD ∈ RF such thaty ∈ D andMB (D, {∅}) ∩ RF = {D}.
Subcase1.1: AssumeMB (D ∪ {x} , {∅}) �= {{x} ,D} . SinceMB(D, {∅}) ∩ RF =

{D} there existsB such that{∅} �= B ⊆ D, B ∪ {x} �= D, andB ∪ {x} ∈ MB(D ∪ {x},
{∅}) ∩ RF .

Subcase1.1.1: AssumeB�D. Without loss of generality assume thatMB (B∪
{x} , {x})∩RF = {B ∪ {x} , {x}} .Thenwe can generate, by an additive preferencewith top
on{∅}, theorderingsD �1 {x} �1 B∪{x}, {x} �2 D �2 B∪{x}, and{x} �3 B∪{x} �3 D,
by an additive preference with top onB, the orderingsD �4 B ∪ {x} �4 {x} , B ∪ {x} �5

{x} �5 D, andB ∪ {x} �6 D �6 {x}. Moreover, by associating large negative values to
objects outsideD ∪ {x}, we must be able to put these three alternatives at the tops of the
individual orderings. Therefore, we have a free-triple on the elements of the rangeD, {x},
andB ∪ {x}. Then the Gibbard–Satterthwaite Theorem implies that there existsi ∈ N such
thatWm

x = Wm
y = {{i}}.

Subcase1.1.2: AssumeB = D. BecauseMB (D ∪ {x} , {∅}) ∩ RF �= {{x} ,D} then
D ∪ {x} ∈ RF . ThenMB (D ∪ {x} , {x}) ∩ RF = {{x} ,D ∪ {x}} , MB (D ∪ {x} ,D) ∩
RF = {D,D ∪ {x}} .Notice thatMB (D, {∅})∩RF = {D}.Therefore, using an argument
similar to theonealreadyused in theproof ofSubcase1.1.1,wehavea free triple onelements
of the rangeD, {x} andD ∪ {x}, and again, the Gibbard–Satterthwaite Theorem implies
that there existsi ∈ N such thatWm

x = Wm
y = {{i}}.

Subcase1.2: AssumeMB (D ∪ {x} , {∅}) = {{x} ,D} .
Subcase1.2.1: There existsC ∈ RF , such thatC ∩ (D ∪ {x}) /∈ {{x} ,D} . LetC = C ∩

D∪{x}andwithout loss of generality assumeMB {
C,C

}∩RF = C.SinceMB
{
C, {x}}∩

RF = {x} andMB {
C,D

} ∩ RF = {D} we have a free triple on elements of the range
D, {x} andC, implying that there existsi ∈ N such thatWm

x = Wm
y = {{i}}, because

y ∈ D.
Subcase1.2.2: For allC ∈ RF , C ∩D ∪ {x} ∈ {{x} ,D} .

Claim 1. Assume that for allC ∈ RF either {x} ⊆ C or D ⊆ C. Then, there exists
A,B ∈ RF andZ ∈ {{x} ,D} such that:
(C.1)MB (A,B) ∩ RF = {A,B} .
(C.2)Z ⊆ A ∩ B.
(C.3)MB

(
A,B

) ∩ RF = A,

whereA = (A ∪ ({x} ∪D)) \Z andB = (B ∪ ({x} ∪D)) \Z.
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Proof of Claim 1. SinceRF has the property that its minimal Cartesian decomposition
has a unique section there exitsG ∈ RF andZ ∈ {{x} ,D} such thatZ ⊆ G andG =
(G ∪ ({x} ∪D)) \Z /∈ RF . Define

MB(H,Z) =
{
E ∈ 2K | E = (E ∪ ({x} ∪D)) \Z for E ∈ MB (H,Z) ∩ RF

}
.

Denote∼ Z = x if Z = D or∼ Z = D if Z = x. BecauseG ∈ MB (G,Z) ∩ RF , then
G ∈ MB (G,Z) .SinceG /∈ MB (

G,∼ Z
)∩RF thenMB (G,Z)�MB

(
G,∼ Z

)∩RF .
Let B be the element in the range with minimalL1−distance toZ with the property that
MB (B,Z)�MB

(
B,∼ Z

) ∩ RF . This implies that

MB (B,Z) \B = MB
(
B, {∼ Z}) ∩ RF . (A.3)

Let A ∈ MB (B,Z) \B be such thatMB (A,B) = {A,B}. Condition (A.3) implies that
A ∈ RF andMB

(
A,B

) ∩ RF = A. This proves the Claim.

LetA,B ∈ RF andZ ∈ {{x} ,D} be such that conditions (C.1)–(C.3) of Claim 1 hold.
Then we can generate, by an additive preference with top onA ∪ {∼ Z}, the orderings
A �1 B �1 A, A �2 A �2 B, andA �3 A �3 B, by an additive preference with top on
B ∪ {∼ z}, the orderingsB �4 A �4 A andB �5 A �5 A, and by an additive preference
with top onB, the orderingA �6 B �6 A. Therefore, we have a free-triple on the elements
of the rangeA, B, andA, implying that here existsi ∈ N such thatWm

x = Wm
y = {{i}}.

Case2: Assume that for everyD ∈ RF such thaty ∈ D, there existsB �= D such that
B ∈ MB (D, {∅}) ∩ RF .

LetD be such that

MB (D, {y}) ∩ RF = {D} (A.4)

and letB be such that

MB (B, {∅}) ∩ RF = {B}. (A.5)

If y ∈ B then we are back to Case 1. Therefore, assume thaty /∈ B. For eachz ∈ B we can
apply Case 1 and obtain that there existsi ∈ N such thatWm

x = Wm
z = {{i}}.

Subcase2.1: Assume that{x, y} ∈ RF .We claim thatMB ({y} , B) ∩ RF = {B}. To
see it, assume that there existsC �= B such thatC ∈ MB({y}, B) ∩ RF . If y ∈ C then
C ∈ MB(D, {y}) ∩ RF contradicting (A.4). If y /∈ C thenC ⊆ B, contradicting the fact
thatC �= B becauseMB(B, {∅})∩RF = {B}. Moreover, sinceMB ({y} ,D)∩RF = {D}
andMB ({y} , {x, y}) ∩ RF = {x, y} we can generate all orderings onD,B, {x, y} (with
these three subsets on the top); therefore, there existsi ∈ N such thatWm

x = Wm
y = {{i}} .

Subcase2.2: Assume that{x, y} /∈ RF . First suppose thatMB ({y} , B) ∩ RF = {B}.
SinceMB ({y} ,D) ∩ RF = {D} andMB ({y} , {x}) ∩ RF = {x} (remember, by (A.4)
we know thaty ∈ RF ) we can generate all orderings onD,B, and{x} (with these three
subsets on the top); therefore, there existsi ∈ N such thatWm

x = Wm
y = {{i}}. Suppose

thatMB({y}, B) �= {B}. We claim thatD = B ∪{y} and thereforeMB({y}, B) = {B,D}.
To see it, letC ∈ MB({y}, B). If y ∈ C then, by (A.4),C = D andC = D ∪ {y}. If y /∈ C
thenC ⊆ B and, by (A.5), C = B. Now, if MB ({y} , B) ∩ RF = {B,D} we can also
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generate all orderings onD,B, and{x} with two preferences: one with top ony (orderings
D �1 B �1 {x}, D �2 {x} �2 B, and{x} �3 D �3 B) and the other with top on{∅}
(orderings{x} �4 B �4 D, B �5 D �5 {x}, andB �6 {x} �6 D). �

Proof of Theorem 1.To prove necessity, letF : An → 2K be a strategy-proof social choice
function and let{B1, . . . , Bq} be the minimal Cartesian decomposition ofRF , which exists
by Proposition 3.
(1) Assume thatx, y ∈ Z1 ∈ AC(Bp) = {Z1, Z2}. Since{B1, . . . , Bq} is minimal we

have thatZ1 ∩ Z2 = {∅}. Assume thatWm
x �= Wm

y ; that is, there existsI ∈ Wm
x such that

I /∈ Wm
y . Consider anyP such that�(Pi) ∩ Bp = Z1 for all i ∈ I and�(Pj ) ∩ Bp = Z2

for all j ∈ N\I . Then,x ∈ F(P ) andy /∈ F(P ) contradicting thatx andy belong to the
same active component ofBp.
(2)Assumex ∈ X,y ∈ Y , andAC(Bp) = {X, Y }. To obtain a contradiction assume there

existsD ∈ Wm
x andN\D ∈ Wm

y . It is easy to findP such thatx, y ∈ F(P ) contradicting
thatx andy belong to different active components ofBp.
(3) Follows from (1) of Proposition A.2 and Proposition A.3.
Sufficiency follows from (2) of Proposition A.2, since it is clear that all social choice

functions defined on each of the sections are onto the active components of the section and
strategy-proof. �
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